You are here
قراءة كتاب Evolution and Classification of the Pocket Gophers of the Subfamily Geomyinae
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Evolution and Classification of the Pocket Gophers of the Subfamily Geomyinae
longer than in the generalized skull, providing a longer block for the planing action of the lower molariform teeth. All teeth, especially P4 and M3, are longer. In M3 the heel (posterior loph) in particular is elongated. Both the anterior and posterior enamel plates usually are retained in M1 and M2.
The superficial (or rostral) masseter muscle, originates on the side of the rostrum and inserts in the masseteric fossa and on the masseteric ridge. The deep masseter, especially the zygomatic part having its origin along the zygomatic arch, inserts on the angular process of the lower jaw. These two divisions of the masseter muscle have a longer pull (forward) in the dolichocephalic skull than in a non-dolichocephalic skull. The temporal and diagastric muscles retract the lower jaws.
Other, secondary, modifications of the dolichocephalic skull are shortening of the angular process of the mandible, broadening of the rostrum, and narrowing of the cranium and zygomata. Depth of the posterior part of the skull is unchanged. The skull appears to be deep and of nearly equal breadth from nasals to occiput. A good example of a dolichocephalic skull is that of Orthogeomys (see p. 1, C and D).
In the platycephalic skull, the principal masticatory movement of the mandible is anterooblique, to one side and then to the other. The oblique passage of the enamel blades of the lower teeth across those of the upper teeth produces a shearing rather than planing action (Fig. 1E, F). The anterooblique movement of the lower jaw is possible because of major architectural changes in the cranium and mandible. These changes include: (1) Broadening of the postrostral part of the skull, especially the occiput (mastoidal breadth equals or exceeds zygomatic breadth in skulls of some taxa); (2) flattening of the skull; (3) anteroposterior compression of the molariform teeth, especially the molars. Therefore, the entire maxillary tooth-row is relatively shorter than in the dolichocephalic skull. Only a vestige of the heel ordinarily remains on M3. The loss of the posterior enamel blades of P4, M1, and M2 eliminates unnecessary friction, and each of these teeth is wider than long. The distance between the posterior ends of the lower jaws is increased approximately in proportion to the extent that the occiput is widened. As a result of the flattening of the skull the angular processes of the lower jaws are lateral to the zygomatic arches, and approximately on the same vertical level with them. Consequently the insertions of masticatory muscles are shifted laterally. This is especially true of the zygomatic division of the deep masseter, which inserts on the angular process. Contraction of that muscle division of one side of the skull moves the lower jaws obliquely forward. The diagastric and temporal muscles of course retract the lower jaws.
The platycephalic skull is the most specialized skull in the Geomyinae and is a result of the new (for the Geomyinae) method of mastication. The subgenus Cratogeomys (see Fig. 1, E and F) has a platycephalic skull. The trend toward platycephalic specialization has been the major feature of evolution in Cratogeomys.
The fossil record of the subfamily Geomyinae begins in the early Miocene of western North America. No geomyids have been recovered from beds of the late Miocene age. Beginning with the early Pliocene the fossil record becomes progressively more complete, and geomyines are relatively abundant in deposits of late Pliocene and Pleistocene age. Although pocket gophers of the subfamily Geomyinae are rare in lower Miocene deposits, members of the subfamily Entoptychinae are relatively common and highly diversified. Four genera and a number of species have been described (see Wood, 1936:4-25), and the subfamily ranged widely in western North America. I interpret this to mean that the geomyines were indeed uncommon in the early Miocene and their distribution restricted since so few of their remains have been recovered in comparison with entoptychines and the known records are only from the northern part of the Great Plains. On the other hand, entoptychines enjoyed a widespread distribution in western North America (see discussion beyond). Probably the geographic range of the geomyines was largely allopatric to that of the more specialized entoptychines. The zone of fossoral adaptation for herbivorous rodents is ecologically narrow, and as a result competition is severe. As a rule, the outcome of episodes of intergroup competition is geographic exclusion. If these rodents were fossorial in the early Miocene—their morphology suggests they were at least semi-fossorial—mutually exclusive patterns of distribution are to be expected.
Dikkomys is the only genus of the Geomyinae known from the early and middle Miocene. Dikkomys matthewi was described by Wood (1936) on the basis of isolated teeth from lower Harrison deposits (Arikareean in age) near Agate, Sioux County, Nebraska. Later, Galbreath (1948:316-317) described the features of an almost complete mandible recovered from the younger upper Rosebud deposits, now considered by MacDonald (1963:149-150) to be middle Miocene, near Wounded Knee, Shannon County, South Dakota. More recently Black (1961:13) has described a new species, Dikkomys woodi, from the Deep River Formation, Meagher County, Montana. The Deep River Formation is late Hemingfordian (middle Miocene) in age. No remains of Dikkomys have been identified in the extensive rodent fauna of the John Day beds of the lower Miocene of Oregon, although entoptychines are abundant in these deposits.
In the present account, Dikkomys is regarded as the ancestor from which the Pliocene and modern geomyines were derived. These probably did not evolve from the subfamily Entoptychinae because the dentition of entoptychines, especially the premolars and third molars, was already highly specialized by Miocene time.
The numerous records of Thomomys and especially Geomys reported from supposed Miocene or Pliocene deposits are without foundation (see Matthew, 1899:66; 1909:114, 116, 119; 1910:67, 72; 1923a:369; 1924:66; Matthew and Cook, 1909:382; Cook and Cook, 1933:49; and Simpson, 1945:80). Most of the records of Geomys date back to the description of Geomys bisculcatus Marsh (1871:121) from the Loup Fork beds of Nebraska (near Camp Thomas on the Middle Loup River). At first Marsh and other investigators thought these beds were of the late Miocene age. Subsequently the Loup Fork fauna was determined by Matthew (1923b) to be mostly early Pliocene (Clarendonian), but with a later Pleistocene element. Recently, Schultz and Stout (1948:560) have shown that the various Loup River faunas and also those from along the Niobrara River (Hay Springs, Rushville, Gordon local faunas) are of middle Pleistocene age, the fossil-bearing beds occurring just below the Pearlette Ash. These beds are those termed the Loup Fork or North Prong of Middle Loup by the earlier workers who supposed them to be of Miocene or Pliocene age. Both Geomys and Thomomys have been recovered from most of these deposits, but they are no older than middle Pleistocene. This is not surprising in view of the primitive structure of the geomyids known from Miocene and Pliocene beds, but the

