You are here
قراءة كتاب Stories of Useful Inventions
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
work and a shorter time to get a blaze. The regular outfit for fire-making with the strike-a-light consisted of a tinder-box, a piece of steel, a piece of flint, and some splinters tipped with sulphur (Fig. 6). The flint and steel were struck together, and the sparks thus made fell into the tinder and made it glow. A splinter was applied as quickly as possible to the tinder, and when a flame was produced the candle which rested in the socket on the tinder-box was lighted. As soon as the splinter was lighted the cover was replaced on the tinder-box, so as to smother the glowing tinder and save it for another time.

FIG. 6.—TINDER BOX, FLINT, STEEL, AND SULPHUR-TIPPED SPLINTERS.
The strike-a-light method was discovered many thousands of years ago, and it has been used by nearly all the civilized nations of the world.4 And it has not been so very long since this method was laid aside. There are many people now living who remember when the flint and steel and tinder-box were in use in almost every household.
About three hundred years ago a third method of producing fire was discovered. If you should drop a small quantity of sulphuric acid into a mixture of chlorate of potash and sugar, you would produce a bright flame. Here was a hint for a new way of making a fire; and a thoughtful man in Vienna, in the seventeenth century, profited by the hint. He took one of the sulphur-tipped splinters which he was accustomed to use with his tinder-box, and dipped it into sulphuric acid, and then applied it to a mixture of chlorate of potash and sugar. The splinter caught fire and burned with a blaze. Here was neither friction nor percussion. The chemical substances were simply brought together, and they caught fire of themselves; that is to say, they caught fire by chemical action.
The discovery made by the Vienna man led to a new kind of match—the chemical match. A practical outfit for fire-making now consisted of a bottle of sulphuric acid (vitriol) and a bundle of splints tipped with sulphur, chlorate of potash, and sugar. Matches of this kind were very expensive, costing as much as five dollars a hundred; besides, they were very unsatisfactory. Often when the match was dipped into the acid it would not catch fire, but would smolder and sputter and throw the acid about and spoil both the clothes and the temper. These dip-splint matches were used in the eighteenth century by those who liked them and could afford to buy them. They did not, however, drive out the old strike-a-light and tinder-box.
In the nineteenth century—the century in which so many wonderful things were done—the fourth step in the development of the match was taken. In 1827, John Walker, a druggist in a small English town, tipped a splint with sulphur, chlorate of potash, and sulphid of antimony, and rubbed it on sandpaper, and it burst into flame. The druggist had discovered the first friction-chemical match, the kind we use to-day. It is called friction-chemical because it is made by mixing certain chemicals together and rubbing them. Although Walker's match did not require the bottle of acid, nevertheless it was not a good one. It could be lighted only by hard rubbing, and it sputtered and threw fire in all directions. In a few years, however, phosphorus was substituted on the tip for antimony, and the change worked wonders. The match could now be lighted with very little rubbing, and it was no longer necessary to have sandpaper upon which to rub it. It would ignite when rubbed on any dry surface, and there was no longer any sputtering. This was the phosphorus match, the match with which we are so familiar.

FIG. 7.—A "BLOCK" OF MATCHES.
After the invention of the easily-lighted phosphorus match there was no longer use for the dip-splint or the strike-a-light. The old methods of getting a blaze were gradually laid aside and forgotten. The first phosphorus matches were sold at twenty-five cents a block—a block (Fig. 7) containing a hundred and forty-four matches. They were used by few. Now a hundred matches can be bought for a cent. It is said that in the United States we use about 150,000,000,000 matches a year. This, on an average, is about five matches a day for each person.
There is one thing against the phosphorus match: it ignites too easily. If one is left on the floor, it may be ignited by stepping upon it, or by something falling upon it. We may step on a phosphorus match unawares, light it, leave it burning, and thus set the house on fire. Mice often have caused fires by gnawing the phosphorus matches and igniting them. In one city thirty destructive fires were caused in one year by mice lighting matches.

FIG. 8.—A BOX OF MODERN SAFETY MATCHES.
To avoid accident by matches, the safety match (Fig. 8) has recently been invented. The safety match does not contain phosphorus. The phosphorus is mixed with fine sand and glued to the side of the box in which the matches are sold. The safety match, therefore, cannot be lighted unless it is rubbed on the phosphorus on the outside of the box. It is so much better than the old kind of phosphorus match that it is driving the latter out of the market. Indeed, in some places it is forbidden by law to sell any kind of match but the safety match.
The invention of the safety match is the last step in the long history of fire-making. The first match was lighted by rubbing, and the match of our own time is lighted by rubbing; yet what a difference there is between the two! With the plowing-stick or fire-drill it took strength and time and skill to get a blaze; with the safety match an awkward little child can kindle a fire in a second.
And how long it has taken to make the match as good as it is! The steam-engine, the telegraph, the telephone, and the electric light were all in use before the simple little safety match.
THE STOVE
From the story of the match you have learned how man through long ages of experience gradually mastered the art of making a fire easily and quickly. In this chapter, and in several which are to follow, we shall have the history of those inventions which have enabled man to make the best use of fire. Since the first and greatest use of fire is to cook food and keep the body warm, our account of the inventions connected with the use of fire may best begin with the story of the stove.
The most important uses of fire were taught by fire itself. As the primitive man stood near the flames of the burning tree and felt their pleasant glow, he learned that fire may add to bodily comfort; and when the flames swept through a forest and overtook a deer and baked it, he learned that fire might be used