You are here
قراءة كتاب The Microscope
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
notwithstanding the advantages above mentioned, was a comparatively feeble and inefficient instrument, owing to the distance which the light had to traverse, and the consequent increase of the chromatic and spherical aberrations. To explain this we have drawn in Fig. 12 a second image near A´ B´, the fact being that the object-glass would not form one image, as has been supposed, but an infinite number of variously-colored and various-sized images, occupying the space between the two dotted arrows. Those nearest the object-glass would be red, and those nearest the eye-glass would be blue. The effect of this is to produce so much confusion, that the instrument was reduced to a mere toy, although these errors were diminished to the utmost possible extent by limiting the aperture of the object-glass, and thus restricting the angle of the pencil of light from each point of the object. But this involved the defects, already explained, of making the picture obscure, so that on the whole the best compound instruments were inferior to the simple microscopes of a single lens, with which, indeed, all the important observations of the last century were made.
Even after the improvement of the simple microscope by the use of doublets and triplets, the long course of the rays, and the large angular pencil required in the compound instrument, deterred the most sanguine from anticipating the period when they should be conducted through such a path free both from spherical and chromatic errors. Within twenty years of the present period, philosophers of no less eminence than M. Blot and Dr. Wollaston predicted that the compound would never rival the simple microscope, and that the idea of achromatizing its object-glass was hopeless. Nor can these opinions be wondered at when we consider how many years the achromatic telescope had existed without an attempt to apply its principles to the compound microscope. When we consider the smallness of the pencil required by the telescope, and the enormous increase of difficulty attending every enlargement of the pencil—when we consider further that these difficulties had to be contended with and removed by operations on portions of glass so small that they are themselves almost microscopic objects, we shall not be surprised that even a cautious philosopher and most able manipulator like Dr. Wollaston should prescribe limits to improvement.
Fortunately for science, and especially for the departments of animal and vegetable physiology, these predictions have been shown to be unfounded. The last fifteen years have sufficed to elevate the compound microscope from the condition we have described to that of being the most important instrument ever bestowed by art upon the investigator of nature. It now holds a very high rank among philosophical implements, while the transcendant beauties of form, color and organization, which it reveals to us in the minute works of nature, render it subservient to the most delightful and instructive pursuits. To these claims on our attention, it appears likely to add a third of still higher importance. The microscopic examination of the blood and other human organic matter will in all probability afford more satisfactory and conclusive evidence regarding the nature and seat of disease than any hitherto appealed to, and will of consequence lead to similar certainty in the choice and application of remedies.
We have thought it necessary to state thus at large the claims of the modern achromatic microscope upon the attention of the reader, as a justification of the length at which we shall give its recent history and explain its construction; and we are further induced to this course by the consideration that the subject is entirely new ground, and that there are at this time not more than two or three makers of achromatic microscopes in England.
Soon after the year 1820 a series of experiments was begun in France by M. Selligues, which were followed up by Frauenhofer at Munich, by Amici at Modena, by M. Chevalier at Paris, and by the late Mr. Tulley in London. In 1824 the last-named excellent artist, without knowing what had been done on the Continent, made the attempt to construct an achromatic object-glass for a compound microscope, and produced one of nine-tenths of an inch focal length, composed of three lenses, and transmitting a pencil of eighteen degrees. This was the first that had been made in England; and it is due to Mr. Tulley to say, that as regards accurate correction throughout the field, that glass has not been excelled by any subsequent combination of three lenses. Such an angular pencil, and such a focal length, would bear an eye-piece adapted to produce a gross magnifying power of one hundred and twenty. Mr. Tulley afterwards made a combination to be placed in front of the first mentioned, which increased the angle of the transmitted pencil to thirty-eight degrees, and bore a power of three hundred.
While these practical investigations were in progress, the subject of achromatism engaged the attention of some of the most profound mathematicians in England. Sir John Herschel, Professor Airy, Professor Barlow, Mr. Coddington, and others, contributed largely to the theoretical examination of the subject; and though the results of their labors were not immediately applicable to the microscope, they essentially promoted its improvement.
For some time prior to 1829 the subject had occupied the mind of a gentleman, who, not entirely practical, like the first, nor purely mathematical, like the last-mentioned class of inquirers, was led to the discovery of certain properties in achromatic combinations which had been before unobserved. These were afterwards experimentally verified; and in the year 1829 a paper on the subject, by the discoverer, Mr. Joseph Jackson Lister, was read and published by the Royal Society. The principles and results thus obtained enabled Mr. Lister to form a combination of lenses which transmitted a pencil of fifty degrees, with a large field correct in every part; as this paper was the foundation of the recent improvements in achromatic microscopes, and as its results are indispensable to all who would make or understand the instrument, we shall give the more important parts of it in detail, and in Mr. Lister’s own words.
“I would premise that the plano-concave form for the correcting flint lens has in that quality a strong recommendation, particularly as it obviates the danger of error which otherwise exists in centering the two curves, and thereby admits of correct workmanship for a shorter focus. To cement together also the two surfaces of the glass diminishes by very nearly half the loss of light from reflection, which is considerable at the numerous surfaces of a combination. I have thought the clearness of the field and brightness of the picture evidently increased by doing this; it prevents any dewiness or vegetation from forming on the inner surfaces; and I see no disadvantage to be anticipated from it if they are of identical curves, and pressed closely together, and the cementing medium permanently homogeneous.
“These two conditions then, that the flint lens shall be plano-concave, and that it shall be joined by some cement to the convex, seem desirable to be taken as a basis for the microscopic object-glass, provided they can be reconciled with the destruction of the spherical and chromatic aberrations of a large pencil.
“Now in every such glass that has been tried by me which has had its correcting lens of either Swiss or English glass, with a double convex of plate, and has been made achromatic by the form given to the outer curve of the convex, the proportion has been such between the refractive and dispersive powers of its lenses, that its figure has been correct for rays issuing from some point in its axis not far from its