You are here
قراءة كتاب On the History of Gunter's Scale and the Slide Rule during the Seventeenth Century
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

On the History of Gunter's Scale and the Slide Rule during the Seventeenth Century
Wingate’s arrangement of the scale in the editions of 1645 and 1658 is about 66 cm. (26.5 in.) long. It contains five parallel lines, about 66 cm. long, each having the divisions of one line marked on one side and of another line on the other side. Thus each line carries two graduations: (1) A single logarithmic line of numbers; (2) a logarithmic line of numbers thrice repeated; (3) the first scale repeated, but beginning with the graduations which are near the middle of the first scale, so that its graduation reads 4, 5, 6, 7, 8, 9, 1, 2, 3; (4) a logarithmic line of numbers twice repeated; (5) a logarithmic line of tangents; (6) a logarithmic line of sines; (7) the rule divided into 1000 equal parts; (8) the scale of latitudes; (9) a line of inches and tenths of inches; (10) a scale consisting of three kinds, viz., a gauge line, a line of chords, and a foot measure, divided into 1000 equal parts.
Important are the first and second scales, by which cube root extraction was possible “by inspection only, without the aid of pen or compass;” similarly the third and fourth scales, for square roots. This innovation is due to Wingate. The 1645 edition announces that the instrument was made in brass by Elias Allen, and in wood by John Thompson and Anthony Thompson in Hosier Lane.
Changes introduced by Milbourn
William Leybourn, in his The Line of Proportion or Numbers, Commonly called Gunter’s Line, Made Easie, London, 1673, says in his preface “To the Reader:”
The Line of Proportion or Numbers, commonly called (by Artificers) Gunter’s Line, hath been discoursed of by several persons, and variously applied to divers uses; for when Mr. Gunter had brought it from the Tables to a Line, and written some Uses thereof, Mr. Wingate added divers Lines of several lengths, thereby to extract the Square or Cube Roots, without doubling or trebling the distance of the Compasses: After him Mr. Milbourn, a Yorkshire Gentleman, disposed it in a Serpentine or Spiral Line, thereby enlarging the divisions of the Line.
On pages 127 and 128 Leybourn adds:
Again, One T. Browne, a Maker of Mathematical Instruments, made it in a Serpentine or Spiral Line, composed of divers Concentrick Circles, thereby to enlarg the divisions, which was the contrivance of one Mr. Milburn a Yorkshire Gentleman, who writ thereof, and communicated his Uses to the aforesaid Brown, who (since his death) attributed it to himself: But whoever was the contriver of it, it is not without inconvenience; for it can in no wise be made portable; and besides (instead of compasses) an opening Joynt with thirds [threads] must be placed to move upon the Centre of the Instrument, without which no proportion can be wrought.
This Mr. Milburn is probably the person named in the diary of the antiquarian, Elias Ashmole, on August 13 [1646?]; “I bought of Mr. Milbourn all his Books and Mathematical Instruments.”[8] Charles Hutton[9] says that Milburne of Yorkshire designed the spiral form about 1650. This date is doubtless wrong, for Thomas Browne who, according to Leybourn, got the spiral form of line from Milbourn, is repeatedly mentioned by William Oughtred in his Epistle[10] printed some time in 1632 or 1633. Oughtred does not mention Milbourn, and says (page 4) that the spiral form “was first hit upon by one Thomas Browne a Joyner, . . . the serpentine revolution being but two true semicircles described on severall centers.”[11]
Changes introduced by Thomas Brown and John Brown
Thomas Brown did not publish any description of his instrument, but his son, John Brown, published in 1661 a small book,[12] in which he says (preface) that he had done “as Mr. Oughtred with Gunter’s Rule, to a sliding and circular form; and as my father Thomas Brown into a Serpentine form; or as Mr. Windgate in his Rule of Proportion.” He says also that “this brief touch of the Serpentine-line I made bold to assert, to see if I could draw out a performance of that promise, that hath been so long unperformed by the promisers thereof.” Accordingly in Chapter XX he gives a description of the serpentine line, “contrived in five (or rather 15) turn.” Whether this description, printed in 1661, exactly fits the instrument as it was developed in 1632, we have no means of knowing. John Brown says:
1. First next the center is two circles divided one into 60, the other into 100 parts, for the reducing of minutes to 100 parts, and the contrary.
2. You have in seven turnes two inpricks, and five in divisions, the first Radius of the sines (or Tangents being neer the matter, alike to the first three degrees,) ending at 5 degrees and 44 minutes.
3. Thirdly, you have in 5 turns the lines of numbers, sines, Tangents, in three margents in divisions, and the line of versed sines in pricks, under the line of Tangents, according to Mr. Gunter’s cross-staff: the sines and Tangents beginning at 5 degrees, and 44 minutes where the other ended, and proceeding to 90 in the sines, and 45 in the Tangents. And the line of numbers beginning at 10, and proceeding to 100, being one entire Radius, and graduated into as many divisions as the largeness of the instrument will admit, being 10 to 10 50 into 50 parts, and from 50 to 100 into 20 parts in one unit of increase, but the Tangents are divided into single minutes from the beginning to the end, both in the first, second and third Radiusses, and the sines into minutes; also from 30 minutes to 40 degrees, and from 40 to 60, into every two minutes, and from 60 to 80 in every 5th minute, and from 80 to 85 every 10th, and the rest as many as can be well discovered.
The versed sines are set after the manner of Mr. Gunter’s Cross-staff, and divided into every 10th minutes beginning at 0, and proceeding to 156 going backwards under the line of Tangents.
4. Fourthly, beyond the Tangent of 45 in one single line, for one Turn is the secants to 51 degrees, being nothing else but the sines reitterated beyond 90.
5. Fifthly, you have the line of Tangents beyond 45, in 5 turnes to 85 degrees, whereby all trouble of backward working is avoided.
6. Sixthly, you have in one circle the 180 degrees of a Semicircle, and also a line of natural sines, for finding of differences in sines, for finding hour and Azimuth.
7. Seventhly, next the verge or outermost edge is a line of equal parts to get the Logarithm of any number, or the Logarithm sine and Tangent of any ark or angle to four figures besides the carracteristick.
8. Eightly and lastly, in the space place between the ending of the middle five turnes, and one half of the circle are three prickt lines fitted for reduction. The uppermost being for shillings, pence and farthings. The next for pounds, and ounces, and quarters of small Averdupoies weight. The last for pounds, shillings and pence, and to be used thus: If you would reduce 16s. 3d. 2q. to a decimal fraction, lay the hair or edge of one of the legs of the index on 16. 3½ in the line of 1. s. d.

