قراءة كتاب On the Economy of Machinery and Manufactures

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
On the Economy of Machinery and Manufactures

On the Economy of Machinery and Manufactures

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 7

After the needles have been arranged in the manner just described, it is necessary to separate them into two parcels, in order that their points may be all in one direction. This is usually done by women and children. The needles are placed sideways in a heap, on a table, in front of each operator, just as they are arranged by the process above described. From five to ten are rolled towards this person with the forefinger of the left hand; this separates them a very small space from each other, and each in its turn is pushed lengthwise to the right or to the left, according to the direction of the point. This is the usual process, and in it every needle passes individually under the finger of the operator. A small alteration expedites the process considerably: the child puts on the forefinger of its right hand a small cloth cap or fingerstall, and rolling out of the heap from six to twelve needles, he keeps them down by the forefinger of the left hand, whilst he presses the forefinger of the right hand gently against their ends: those which have the points towards the right hand stick into the fingerstall; and the child, removing the finger of the left hand, slightly raises the needles sticking into the cloth, and then pushes them towards the left side. Those needles which had their eyes on the right hand do not stick into the finger cover, and are pushed to the heap on the right side before the repetition of this process. By means of this simple contrivance each movement of the finger, from one side to the other, carries five or six needles to their proper heap; whereas, in the former method, frequently only one was moved, and rarely more than two or three were transported at one movement to their place.

13. Various operations occur in the arts in which the assistance of an additional hand would be a great convenience to the workman, and in these cases tools or machines of the simplest structure come to our aid: vices of different forms, in which the material to be wrought is firmly grasped by screws, are of this kind, and are used in almost every workshop; but a more striking example may be found in the trade of the nail-maker.

Some kinds of nails, such as those used for defending the soles of coarse shoes, called hobnails, require a particular form of the head, which is made by the stroke of a die. The workman holds one end of the rod of iron out of which he forms the nails in his left hand; with his right hand he hammers the red-hot end of it into a point, and cutting the proper length almost off, bends it nearly at a right angle. He puts this into a hole in a small stake-iron immediately under a hammer which is connected with a treadle, and has a die sunk in its surface corresponding to the intended form of the head; and having given one part of the form to the head with the small hammer in his hand, he moves the treadle with his foot, disengages the other hammer, and completes the figure of the head; the returning stroke produced by the movement of the treadle striking the finished nail out of the hole in which it was retained. Without this substitution of his foot for another hand, the workman would, probably, be obliged to heat the nails twice over.

14. Another, though fortunately a less general substitution of tools for human hands, is used to assist the labour of those who are deprived by nature, or by accident, of some of their limbs. Those who have had an opportunity of examining the beautiful contrivances for the manufacture of shoes by machinery, which we owe to the fertile invention of Mr Brunel, must have noticed many instances in which the workmen were enabled to execute their task with precision, although labouring under the disadvantages of the loss of an arm or leg. A similar instance occurs at Liverpool, in the Institution for the Blind, where a machine is used by those afflicted with blindness, for weaving sash-lines; it is said to have been the invention of a person suffering under that calamity. Other examples might be mentioned of contrivances for the use, the amusement, or the instruction of the wealthier classes, who labour under the same natural disadvantages. These triumphs of skill and ingenuity deserve a double portion of our admiration when applied to mitigate the severity of natural or accidental misfortune; when they supply the rich with occupation and knowledge; when they relieve the poor from the additional evils of poverty and want.

15. Division of the objects of machinery. There exists a natural, although, in point of number, a very unequal division amongst machines: they may be classed as; first, those which are employed to produce power, and as, secondly, those which are intended merely to transmit force and execute work. The first of these divisions is of great importance, and is very limited in the variety of its species, although some of those species consist of numerous individuals.

Of that class of mechanical agents by which motion is transmitted—the lever, the pulley, the wedge, and many others— it has been demonstrated, that no power is gained by their use, however combined. Whatever force is applied at one point can only be exerted at some other, diminished by friction and other incidental causes; and it has been further proved, that whatever is gained in the rapidity of execution is compensated by the necessity of exerting additional force. These two principles, long since placed beyond the reach of doubt, cannot be too constantly borne in mind. But in limiting our attempts to things which are possible, we are still, as we hope to shew, possessed of a field of inexhaustible research, and of advantages derived from mechanical skill, which have but just begun to exercise their influence on our arts, and may be pursued without limit contributing to the improvement, the wealth, and the happiness of our race.

16. Of those machines by which we produce power, it may be observed, that although they are to us immense acquisitions, yet in regard to two of the sources of this power—the force of wind and of water—we merely make use of bodies in a state of motion by nature; we change the directions of their movement in order to render them subservient to our purposes, but we neither add to nor diminish the quantity of motion in existence. When we expose the sails of a windmill obliquely to the gale, we check the velocity of a small portion of the atmosphere, and convert its own rectilinear motion into one of rotation in the sails; we thus change the direction of force, but we create no power. The same may be observed with regard to the sails of a vessel; the quantity of motion given by them is precisely the same as that which is destroyed in the atmosphere. If we avail ourselves of a descending stream to turn a water-wheel, we are appropriating a power which nature may appear, at first sight, to be uselessly and irrecoverably wasting, but which, upon due examination, we shall find she is ever regaining by other processes. The fluid which is falling from a higher to a lower level, carries with it the velocity due to its revolution with the earth at a greater distance from its centre. It will therefore accelerate, although to an almost infinitesimal extent, the earth's daily rotation. The sum of all these increments of velocity, arising from the descent of all the falling waters on the earth's surface, would in time become perceptible, did not nature, by the process of evaporation, convey the waters back to their sources; and thus again, by removing matter to a greater distance from the centre, destroy the velocity generated by its previous approach.

17. The force of vapour is another fertile source of moving power; but even in this case it cannot be maintained that power is created. Water is converted into elastic vapour by the combustion of fuel. The chemical changes which thus take place are constantly increasing the atmosphere by large quantities of carbonic acid and other gases noxious to animal life. The means by which nature decomposes these

Pages