قراءة كتاب Encyclopaedia Britannica, 11th Edition, "Matter" to "Mecklenburg" Volume 17, Slice 8

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Encyclopaedia Britannica, 11th Edition, "Matter" to "Mecklenburg"
Volume 17, Slice 8

Encyclopaedia Britannica, 11th Edition, "Matter" to "Mecklenburg" Volume 17, Slice 8

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

Electrical Theory of Matter.—One of the most characteristic things about matter is the possession of mass. When we take the electrical theory of matter the idea of mass takes new and interesting forms. This point may be illustrated by the case of a single electrified particle; when this moves it produces in the region around it a magnetic field, the magnetic force being proportional to the velocity of the electrified particle.1 In a magnetic field, however, there is energy, and the amount of energy per unit volume at any place is proportional to the square of the magnetic force at that place. Thus there will be energy distributed through the space around the moving particle, and when the velocity of the particle is small compared with that of light we can easily show that the energy in the region around the charged particle is μe2/3a, when v is the velocity of the particle, e its charge, a its radius, and μ the magnetic permeability of the region round the particle. If m is the ordinary mass of the particle, the part of the kinetic energy due to the motion of this mass is 12 mv2, thus the total kinetic energy is 12 (m + 23μe2/a). Thus the electric charge on the particle makes it behave as if its mass were increased by 23μe2/a. Since this increase in mass is due to the energy in the region outside the charged particle, it is natural to look to that region for this additional mass. This region is traversed by the tubes of force which start from the electrified body and move with it, and a very simple calculation shows that we should get the increase in the mass which is due to the electrification if we suppose that these tubes of force as they move carry with them a certain amount of the ether, and that this ether had mass. The mass of ether thus carried along must be such that the amount of it in unit volume at any part of the field is such that if this were to move with the velocity of light its kinetic energy would be equal to the potential energy of the electric field in the unit volume under consideration. When a tube moves this mass of ether only participates in the motion at right angles to the tube, it is not set in motion by a movement of the tube along its length. We may compare the mass which a charged body acquires in virtue of its charge with the additional mass which a ball apparently acquires when it is placed in water; a ball placed in water behaves as if its mass were greater than its mass when moving in vacuo; we can easily understand why this should be the case, because when the ball in the water moves the water around it must move as well; so that when a force acting on the ball sets it in motion it has to move some of the water as well as the ball, and thus the ball behaves as if its mass were increased. Similarly in the case of the electrified particle, which when it moves carries with it its lines of force, which grip the ether and carry some of it along with them. When the electrified particle is moved a mass of ether has to be moved too, and thus the apparent mass of the particle is increased. The mass of the electrified particle is thus resident in every part of space reached by its lines of force; in this sense an electrified body may be said to extend to an infinite distance; the amount of the mass of the ether attached to the particle diminishes so rapidly as we recede from it that the contributions of regions remote from the particle are quite insignificant, and in the case of a particle as small as a corpuscle not one millionth part of its mass will be farther away from it than the radius of an atom.

The increase in the mass of a particle due to given charges varies as we have seen inversely as the radius of the particle; thus the smaller the particle the greater the increase in the mass. For bodies of appreciable size or even for those as small as ordinary atoms the effect of any realizable electric charge is quite insignificant, on the other hand for the smallest bodies known, the corpuscle, there is evidence that the whole of the mass is due to the electric charge. This result has been deduced by the help of an extremely interesting property of the mass due to a charge of electricity, which is that this mass is not constant but varies with the velocity. This comes about in the following way. When the charged particle, which for simplicity we shall suppose to be spherical, is at rest or moving very slowly the lines of electric force are distributed uniformly around it in all directions; when the sphere moves, however, magnetic forces are produced in the region around it, while these, in consequence of electro-magnetic induction in a moving magnetic field, give rise to electric forces which displace the tubes of electric force in such a way as to make them set themselves so as to be more at right angles to the direction in which they are moving than they were before. Thus if the charged sphere were moving along the line AB, the tubes of force would, when the sphere was in motion, tend to leave the region near AB and crowd towards a plane through the centre of the sphere and at right angles to AB, where they would be moving more nearly at right angles to themselves. This crowding of the lines of force increases, however, the potential energy of the electric field, and since the mass of the ether carried along by the lines of force is proportional to the potential energy, the mass of the charged particle will also be increased. The amount of variation of the mass with the velocity depends to some extent on the assumptions we make as to the shape of the corpuscle and the way in which it is electrified. The simplest expression connecting the mass with the velocity is that when the velocity is v the mass is equal to 23μe2/a [1/(1 − v2/c2)1/2] where c is the velocity of light. We see from this that the variation of mass with velocity is very small unless the velocity of the body approaches that of light, but when, as in the case of the β particles emitted by radium, the velocity is only a few per cent less than that of light, the effect of velocity on the mass becomes very considerable; the formula indicates that if the particles were moving with a velocity equal to that of light they would behave as if their mass were infinite. By observing the variation in the mass of a corpuscle as its velocity changes we can determine how much of the mass depends upon the electric charge and how much is independent of it. For since the latter part of the mass is independent of the velocity, if it predominates the variation with velocity of the mass of a corpuscle will be small; if on the other hand it is negligible the variation in mass with velocity will be that indicated by theory given above. The experiment of Kaufmann (Göttingen Nach., Nov. 8, 1901), Bucherer (Ann. der Physik., xxviii. 513, 1909) on the masses of the β particles shot out by radium, as well as those by Hupka (Berichte der deutsch. physik. Gesell., 1909, p. 249) on the masses of the corpuscle in cathode rays are in agreement with the view that the whole of the mass of these particles is due to their electric charge.

The alteration in the mass of a moving charge with its velocity is primarily due to the increase in the potential energy which accompanies the increase in velocity. The connexion between potential energy and mass is general and holds for any arrangement of electrified particles; thus if we assume the

Pages