You are here
قراءة كتاب Encyclopaedia Britannica, 11th Edition, "Map" to "Mars" Volume 17, Slice 6
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Encyclopaedia Britannica, 11th Edition, "Map" to "Mars" Volume 17, Slice 6
Geographical Society, will be found sufficient as a rule; according to this system the vowels are to be sounded as in Italian, the consonants as in English, and no redundant letters are to be introduced. The diphthong ai is to be pronounced as in aisle; au as ow in how; aw as in law. Ch is always to be sounded as in church, g is always hard; y always represents a consonant; whilst kh and gh stand for gutturals. One accent only is to be used, the acute, to denote the syllable on which stress is laid. This system has in great measure been followed throughout the present work, but it is obvious that in numerous instances these rules must prove inadequate. The introduction of additional diacritical marks, such as ˉ and ˜, used to express quantity, and the diaeresis, as in aï, to express consecutive vowels, which are to be pronounced separately, may prove of service, as also such letters as ä, ö and ü, to be pronounced as in German, and in lieu of the French ai, eu or u.
The United States Geographic Board acts upon rules practically identical with those indicated, and compiles official lists of place-names, the use of which is binding upon government departments, but which it would hardly be wise to follow universally in the case of names of places outside America.
Measurement on Maps
Measurement of Distance.—The shortest distance between two places on the surface of a globe is represented by the arc of a great circle. If the two places are upon the same meridian or upon the equator the exact distance separating them is to be found by reference to a table giving the lengths of arcs of a meridian and of the equator. In all other cases recourse must be had to a map, a globe or mathematical formula. Measurements made on a topographical map yield the most satisfactory results. Even a general map may be trusted, as long as we keep within ten degrees of its centre. In the case of more considerable distances, however, a globe of suitable size should be consulted, or—and this seems preferable—they should be calculated by the rules of spherical trigonometry. The problem then resolves itself in the solution of a spherical triangle.