قراءة كتاب The Origin of Vertebrates
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
href="@public@vhost@g@gutenberg@html@files@44000@[email protected]#page517" class="pginternal" tag="{http://www.w3.org/1999/xhtml}a">517
"Go on and prosper; there is nothing so
useful in science as one of those earthquake
hypotheses, which oblige one to face
the possibility that the solidest-looking
structures may collapse."
Letter from Prof. Huxley to
the Author. June 2, 1889.
THE
ORIGIN OF VERTEBRATES
INTRODUCTION
In former days it was possible for a man like Johannes Müller to be a leader both in physiology and in comparative anatomy. Nowadays all scientific knowledge has increased so largely that specialization is inevitable, and every investigator is confined more and more not only to one department of science, but as a rule to one small portion of that department. In the case of such cognate sciences as physiology and comparative anatomy this limiting of the scope of view is especially deleterious, for zoology without physiology is dead, and physiology in many of its departments without comparative anatomy can advance but little. Then, again, the too exclusive study of one subject always tends to force the mind into a special groove—into a line of thought so deeply tinged with the prevalent teaching of the subject, that any suggestions which arise contrary to such teaching are apt to be dismissed at once as heretical and not worthy of further thought; whereas the same suggestion arising in the mind of one outside this particular line of thought may give rise to new and valuable scientific discoveries.
Nothing but good can, in my opinion, result from the incursion of the non-specialist into the realm of the specialist, provided that the former is in earnest. Over and over again the chemist has given valuable help to the physicist, and the physicist to the chemist, so closely allied are the two subjects; so also is it with physiology and anatomy, the two subjects are so interdependent that a worker in the one may give valuable aid towards the solution of some large problem which is the special territory of the other.
It has been a matter of surprise to many how it came about that I, a worker in the physiological laboratory at Cambridge ever since Foster introduced experimental physiology into English-speaking nations, should have devoted so much time to the promulgation of a theory of the origin of vertebrates—a subject remote from physiology, and one of the larger questions appertaining to comparative anatomy. By what process of thought was I led to take up the consideration of a subject apparently so remote from all my previous work, and so foreign to the atmosphere of a physiological laboratory?
It may perhaps be instructive to my readers to see how one investigation leads to another, until at last, nolens volens, the worker finds himself in front of a possible solution to a problem far removed from his original investigation, which by the very magnitude and importance of it forces him to devote his whole energy and time to seeing whether his theory is good.
In the years 1880-1884 I was engaged in the investigation of the action of the heart, and the nature of the nerves which regulate that action. In the course of that investigation I was struck by the ease with which it was possible to distinguish between the fibres of the vagus and accelerator nerves on their way to the heart, owing to the medullation of the former and the non-medullation of the latter. This led me to an investigation of the accelerator fibres, to find out how far they are non-medullated, and so to the discovery that the rami communicantes connecting together the central nervous system and the sympathetic are in reality single, not double, as had hitherto been thought; for the grey ramus communicans is in reality a peripheral nerve which supplies the blood-vessels of the spinal cord and its membranes, and is of the same nature as the grey accelerators to the heart.
This led to the conclusion that there is no give and take between two independent nervous systems, the cerebro-spinal and the sympathetic, as had been taught formerly, but only one nervous system, the cerebro-spinal, which sends special medullated nerve-fibres, characterized by their smallness, to the cells of the sympathetic system, from which fibres pass to the periphery, usually non-medullated. These fine medullated nerves form the system of white rami communicantes, and have since been called by Langley the preganglionic nerves. Further investigation showed that such white rami are not universally distributed, but are confined to the thoracico-lumbar region, where their distribution is easily seen in the ventral roots, for the cells of the sympathetic system are entirely efferent in nature, not afferent; therefore, the fibres entering into them from the central nervous system leave the spinal cord by ventral, not dorsal roots.
Following out this clue, I then found that in addition to this thoracico-lumbar outflow of efferent ganglionated visceral nerves, there are similar outflows in the cranial and sacral regions, belonging in the former case especially to the vagus system of nerves, and in the latter to the system of nerves which pass from the sacral region of the cord to the ganglion-cells of the hypogastric plexus, and from them supply the bladder, rectum, etc. To this system of nerves, formerly called the nervi erigentes, I gave the name pelvic splanchnics, in order to show their uniformity with the abdominal splanchnics. These investigations led to the conclusion that the organic system of nerves, characterized by the possession of efferent nerve-cells situated peripherally, arises from the central nervous system by three distinct outflows—cranial, thoracico-lumbar, and sacral, respectively. To this system Langley has lately given the name 'autonomic.' These three outflows are separated by two gaps just where the plexuses for the anterior and posterior extremities come in.
This peculiar arrangement of the white rami communicantes set me thinking, for the gaps corresponded to an increase of somatic musculature to form the muscles of the fore and hind limbs, so that if, as seemed probable, the white rami communicantes arise segmentally from the spinal cord, then a marked distinction must exist in structure between the spinal cord in the thoracic region, where the visceral efferent nerves are large in amount and the body musculature scanty, and in the cervical or lumbar swellings, where the somatic musculature abounds, and the white rami communicantes scarcely exist.
I therefore directed my attention in the next place to the structure of the central nervous system in the endeavour to associate the topographical arrangement of cell-groups in this system with the outflow of the different kinds of nerve-fibres to the peripheral organs.
This investigation forcibly impressed upon my mind the uniformity in the arrangement of the central nervous system as far as the centres of origin of all the segmental nerves are concerned, both cranial and spinal, and also the original segmental character of this part of the nervous system.
I could not, therefore, help being struck by the force of the comparison between the central nervous systems of Vertebrata and Appendiculata as put forward again and again by the past generation of comparative anatomists, and wondered why it had been