قراءة كتاب The Anatomy of Bridgework
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
of insuring that under the joint effect of vertical loading and twisting, the stress in the flange shall at maximum loads be uniform across the section, and allow it to remain straight. This may be secured by making the eccentricity of the flange section equal to that of the loading. For instance, if the load be applied 3 inches away from the web centre, the flange should have its centre of gravity 3 inches on the other side of the centre line. It can be shown that this is true throughout the length of the girder, and irrespective of the depth. An instance in which flange eccentricity being in excess, curvature outwards resulted, will be found in a later chapter on deformations, etc. It will not generally be necessary to make the bottom flange eccentric, as it is commonly tied in some way; but if done, the eccentricity should be on the same side as for the top. The flanges remaining straight under these conditions are not subject to the complications of stress referred to in the case first quoted. The author has adopted both the last named details in bridges where he has been obliged to accept unfair loading of the kind discussed.
It should be remarked that by the two first methods, if the stiffening frames are wide apart and attached direct to the web, there is a liability for this to tear, under distress, rather than keep the girder in line.
There is one other possible consequence of throwing load upon the flanges of a girder of a much more alarming nature. In girders not very well stiffened, it may happen that the frequent application of load in this manner finally so injures the web-plate, just above the top edge of the bottom angle-bars, as to cause it to rip in a horizontal direction. More likely is this to happen with a centre girder taking load first on one side, then on the other, and again on both together. Cases may be cited in which cracks right through the webs 3 feet or more in length have resulted from this cause. It is very probable, however, that in some of these cases the matter was aggravated by the use of a poor iron in the webs, as at one time engineers, from mistaken notions of the extreme tenuity permissible in webs near the centre of a girder, would, if they could not be made thin enough, even encourage the use of an indifferent metal as being quite good enough for that part of the work.
An instance of web-fracture from somewhat similar causes may be here given.
In a bridge of 31 feet 6 inches effective span, and consisting of twin girders carrying rails between, as shown in Figs. 8 and 9, the load resting upon the inner ledges, formed by the bottom flange, induced such a bending and tearing action along the web just above the angle-bars, as to cause a rip in one of the girders, well open for some distance, and which could be traced for 14 feet as a continuous crack.
It will be noticed in the figure that the T stiffeners occur only at the outer face of the web, and that the inner vertical strips stop short at the top edge of the angles, the result being that under load the flange would tend to twist around some point, say A, at each stiffener, inducing a serious stress in the thin web at that place, while away from these stiffeners the web would be more free to yield without tearing. The fact that at a number of the stiffeners incipient cracks were observed, some only a few inches long, suggests this view of the matter.
A case of web-failure from other influences coming under notice showed breaks at the upper part of the web extending downwards.
In this bridge, of 32 feet span, which had been in existence thirty-two years, the webs—originally 1⁄4 inch thick—were, largely because of cinder ballast in contact with them, so badly wasted as to be generally little thicker than a crown-piece, and in places were eaten through; in addition to which, the road being on a sharp curve, the rail-balks had been strutted from the webs to keep them in position, the effect of which would be to exert a hammering thrust upon the face of the web at the abutting ends, and assist in starting cracks in webs already much corroded. A feature of this case, tending to show that the breaks resulted as the joint effect of waste and ill-usage by the strut members, rather than by excessive stress in the web as reduced, is to be found in the fact that the girders when removed were observed to be in remarkably good shape—i.e. the camber, marked on the original drawings to be 11⁄2 inch, still showed as a perfectly even curve of that rise, which would hardly have been the case if the lower flange had been let down by web-rupture, the result of excessive web-stresses.
Occasionally webs will crack through the solid unwasted plate, in a line nearly vertical; not where shear stress is greatest, but generally at some other place, and from no apparent cause, either of stress or ill-usage. The writer has observed this only in the case of small girders not exceeding 2 feet in depth; and, for want of any better reason, attributes these cracks to poor material, coupled with some latent defect. In a bridge having some thirty cross-girders, each 26 feet long, about every other one had a web cracked in this manner after many years’ use.
Web-cracks of the kind first indicated, are perhaps, the most probable source of danger in plate-girders, of any which are likely to occur. The fault is insidious, difficult to detect when first developed, and perhaps not seen at all till the bridge, condemned for some other reason, has the girders freely exposed and brought into broad light. The manner in which old girders are sometimes partly concealed by timberwork, or covered by ballast, makes the detection of these defects an uncertain matter, unless sufficient trouble is occasionally taken to render inspection complete.
The manner in which girders with wasted and fractured webs will still hang together under heavy loading seems to warrant the deduction that, in designing new work, it can hardly be necessary to provide such a considerable amount of web-stiffening as is sometimes seen; experience showing that defects of the web-structure do not commonly occur in the stiffening so frequently as in the plate, and then in the form of cracks.
A case of web-buckling lies, so far, without the author’s experience. There is no need to introduce, for web-stresses alone, more stiffening than that which corresponds to making the stiffeners do duty as vertical struts in an openwork girder; in which case it is sufficient to insure that the stiffeners occurring in a length equal to the girder’s depth shall, as struts, be strong enough in the aggregate to take the whole shear force at the section considered, in no case exceeding this amount on one stiffener. For thin webs in which the free breadth is greater than one hundred and twenty times the thickness, the diagonal compressive stress may be completely ignored, and the thickness determined with reference to the diagonal tension stress only.
There is one fault which frequently shows