You are here

قراءة كتاب The Diatomaceae of Philadelphia and Vicinity

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Diatomaceae of Philadelphia and Vicinity

The Diatomaceae of Philadelphia and Vicinity

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

of fresh-water species previous to the Miocene period which is entirely marine. In those subject to fluctuations of the waves, as pelagic diatoms, their existence appears to be contingent upon the methods by which the separate frustules can cohere. Various devices, including hooks, spiral bundles, horns and processes exuding threads of plasma, exist for holding together the frustules. When marine forms are found in quiet waters some of these devices, being no longer of any value, cease to grow, although free swimming diatoms are rare. They either occur in long chains or are stipitate or sessile. If it is further assumed that the fresh-water diatoms are found in greater abundance in later periods, the action of running streams makes necessary the provision of some means by which the species may continue to colonize. This may be recognized in the occurrence of linear forms chiefly in streams. Circular forms, such as Cyclotella which have no raphe, are found in quiet waters, such as pools or ditches, and never exist living in running streams. Those forms only would be able to live in water having a more or less swift current under one of three conditions: they must, as in Gomphonema, be adherent to surrounding objects by a stipe; or be enclosed in a gelatinous tube, as in Homœocladia; or have an independent motion powerful enough to overcome the influence of the current. It is true that many forms with a raphe have no apparent motion. In the case of Mastogloia provision is made in a gelatinous cushion in which the frustules are preserved. In Cocconeis, with a true raphe in one valve only, in Epithemia, with a partial raphe, or in certain Eunotiæ with a trace of one, we find species evidently degenerate and parasitic. The long Synedræ, having only a median line, live in running streams, since they are attached at one end to other algae. Forms with a true raphe appear to be more highly developed, since they are able to seek locations favorable to growth. Given, therefore, the structure of the valve, the habitat may be inferred.

The Motion of Diatoms

The erratic backward and forward movement of certain diatoms, especially those of the Naviculoid group, or the slow, rolling motion of Surirella, has been discussed in so many ways without definite conclusions that a brief statement will be sufficient. Osmosis, the amœboid movement of the coleoderm, the protrusion of protoplasm or protoplasmic threads through the raphe, the existence of actual organs of locomotion or cilia, and the lack of synchronism in the chemical action occurring at the ends of the cell which is sometimes divided by the plasma bridge, have been offered in explanation. The chief objection to the theory of cyclosis appears to be that the resultant motion is so greatly in excess of the rotation of protoplasm in the cell. More or less motion is observed in various kinds of free cells, but the movement of diatoms is not evident in those without either a raphe or a keel upon which and apparently by which the phenomena are produced.

Mr. T. Chalkley Palmer, in various articles in the Proceedings of the Delaware County Institute of Science, especially in Vols. 1 and 3, gives the results of exhaustive experiments. "Nothing, it would seem," he says, "could be more conclusive as to the essential sameness of the nature of motion in monads and diatoms, than the fact that both monads and diatoms require oxygen in order to perform motion, that they come to rest when oxygen becomes scarce, and that they resume their motion when oxygen is again supplied."

He also thinks "that the living substance of the cell, more or less deeply overlaid with coleoderm substance of varying consistency, and itself assuming that degree of fluidity which best meets the requirements of the situation, permeates the raphes, circulates in the keels, or in some cases protrudes quite beyond the silica, and functions as the actual propulsive agent."

The Function of Diatoms

Of all forms of vegetation, the Diatomaceæ are, perhaps, the most ubiquitous. Where-ever a sufficient amount of moisture, heat and light are found, they grow. It was during the Miocene period that they first appeared, and, as marine forms, reached their greatest development, both as to size and beauty of marking, while their prevalence throughout the world in enormous quantities has been often mentioned. The Miocene beds of Richmond and Maryland continued over the Cretaceous formations of New Jersey have outcropped in certain localities within our district, but are not considered in this discussion.

The function of diatoms is not essentially different from that of other algæ in providing food for aquatic animals, such as Salpæ and oysters, but it is, however, in other respects that they are not only important but necessary factors in the preservation of life.

"Full nature swarms with life; one wondrous mass

Of animals, or atoms organized,

Waiting the vital breath, when parent heaven

Shall bid his spirit blow. The hoary fen,

In putrid streams, emits the living cloud

Of pestilence. Thro' subterranean cells

Where searching sunbeams scarce can find a way,

Earth animated heaves."

I am not certain if Thomson fully understood the matter, but he has remarkably described the facts. When "the vital breath" of returning spring animates the earth, the "subterranean cells" of diatoms, the "atoms organized," through the liberation of vast quantities of oxygen, immediately begin the purification of the "putrid streams." Were these streams not so purified, the accumulation of animal and vegetable débris would eventually cause an enormous bacterial growth fatal to animal life.

DIATOMACEÆ

Unicellular or filamentous. Cells either free, sessile, united in filaments, immersed in a gelatinous envelope or in fronds composed of branching tubes; microscopic, enclosed in a more or less siliceous envelope (frustule), composed of two parts (valves), usually connected by an intervening band (zone or girdle). Cell contents include yellowish or brownish chlorophyll-like bodies which occur in one or several bands (placcochromatic), or as variously distributed granular masses (coccochromatic) lining the inner walls. Growth by ordinary cell division or by auxospores; sexual multiplication by the formation of sporangia. Valves of two kinds: (a) Those in which the markings or parts are more or less concentric (Centricæ); (b) Those (Pennatæ) in which the parts are more or less symmetrically divided by a line (pseudoraphe) or by a cleft (raphe).

CENTRICÆ

Valves without a dividing line or cleft; markings more or less radiate; transverse section of frustule circular, polygonal, or elliptical, sometimes irregular.

Divided into four groups:

1. Discoideæ.—Frustules (cells) discoid; valves without horns or elevations (sometimes with processes).

2. Solenoideæ.—Frustules with numerous girdle bands.

3. Biddulphioideæ.—Frustules box-like, i. e., with the longitudinal axis greater than in the Discoideæ. Valves with two or more angles, elevations or horns.

4. Rutilarioideæ.—Valves as if naviculoid, but with irregular or radial structure.

Groups 2 and 4 are not included in our description. No. 2 contains plankton genera only, while No. 4 consists of genera not yet found in this locality.

DISCOIDEÆ

1. Coscinodisceæ.—Valve not divided by rays or costæ into sectors; puncta sometimes radiate; ocelli or processes absent.

2. Actinodisceæ.—Valve with

Pages