قراءة كتاب Gardening Without Irrigation: or without much, anyway
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Gardening Without Irrigation: or without much, anyway
If that soil contained little clay, its water-holding ability in the top 2 feet could be doubled. Referring to the chart "Available Moisture" in Chapter 2, we see that sandy soil can release up to 1 inch of water per foot. By dint of massive amendment we might add 1 inch of available moisture per foot of soil to the reserve. That's 2 extra inches of water, enough to increase the time an ordinary garden can last between heavy irrigations by a week or 10 days.
If the soil in question were a silty clay, it would naturally make 2 1/2 inches available per foot. A massive humus amendment would increase that to 3 1/2 inches in the top foot or two, relatively not as much benefit as in sandy soil. And I seriously doubt that many gardeners would be willing to thoroughly double dig to an honest 24 inches.
Trying to maintain organic matter levels above 10 percent is an almost self-defeating process. The higher the humus level gets, the more rapidly organic matter tends to decay. Finding or making enough well-finished compost to cover the garden several inches deep (what it takes to lift humus levels to 10 percent) is enough of a job. Double digging just as much more into the second foot is even more effort. But having to repeat that chore every year or two becomes downright discouraging. No, either your soil naturally holds enough moisture to permit dry gardening, or it doesn't.
Keeping the Subsoil Open with Green Manuring
When roots decay, fresh organic matter and large, long-lasting passageways can be left deep in the soil, allowing easier air movement and facilitating entry of other roots. But no cover crop that I am aware of will effectively penetrate firm plowpan or other resistant physical obstacles. Such a barrier forces all plants to root almost exclusively in the topsoil. However, once the subsoil has been mechanically fractured the first time, and if recompaction is avoided by shunning heavy tractors and other machinery, green manure crops can maintain the openness of the subsoil.
To accomplish this, correct green manure species selection is essential. Lawn grasses tend to be shallow rooting, while most regionally adapted pasture grasses can reach down about 3 feet at best. However, orchard grass (called coltsfoot in English farming books) will grow down 4 or more feet while leaving a massive amount of decaying organic matter in the subsoil after the sod is tilled in. Sweet clover, a biennial legume that sprouts one spring then winters over to bloom the next summer, may go down 8 feet. Red clover, a perennial species, may thickly invade the top 5 feet. Other useful subsoil busters include densely sown Umbelliferae such as carrots, parsley, and parsnip. The chicory family also makes very large and penetrating taproots.
Though seed for wild chicory is hard to obtain, cheap varieties of endive (a semicivilized relative) are easily available. And several pounds of your own excellent parsley or parsnip seed can be easily produced by letting about 10 row feet of overwintering roots form seed. Orchard grass and red clover can be had quite inexpensively at many farm supply stores. Sweet clover is not currently grown by our region's farmers and so can only be found by mail from Johnny's Selected Seeds (see Chapter 5 for their address). Poppy seed used for cooking will often sprout. Sown densely in October, it forms a thick carpet of frilly spring greens underlaid with countless massive taproots that decompose very rapidly if the plants are tilled in in April before flower stalks begin to appear. Beware if using poppies as a green manure crop: be sure to till them in early to avoid trouble with the DEA or other authorities.
For country gardeners, the best rotations include several years of perennial grass-legume-herb mixtures to maintain the openness of the subsoil followed by a few years of vegetables and then back (see Newman Turner's book in more reading). I plan my own garden this way. In October, after a few inches of rain has softened the earth, I spread 50 pounds of agricultural lime per 1,000 square feet and break the thick pasture sod covering next year's garden plot by shallow rotary tilling. Early the next spring I broadcast a concoction I call "complete organic fertilizer" (see Growing Vegetables West of the Cascades or the Territorial Seed Company Catalog), till again after the soil dries down a bit, and then use a spading fork to open the subsoil before making a seedbed. The first time around, I had to break the century-old plowpan—forking compacted earth a foot deep is a lot of work. In subsequent rotations it is much much easier.
For a couple of years, vegetables will grow vigorously on this new ground supported only with a complete organic fertilizer. But vegetable gardening makes humus levels decline rapidly. So every few years I start a new garden on another plot and replant the old garden to green manures. I never remove vegetation during the long rebuilding under green manures, but merely mow it once or twice a year and allow the organic matter content of the soil to redevelop. If there ever were a place where chemical fertilizers might be appropriate around a garden, it would be to affordably enhance the growth of biomass during green manuring.
Were I a serious city vegetable gardener, I'd consider growing vegetables in the front yard for a few years and then switching to the back yard. Having lots of space, as I do now, I keep three or four garden plots available, one in vegetables and the others restoring their organic matter content under grass.
Mulching
Gardening under a permanent thick mulch of crude organic matter is recommended by Ruth Stout (see the listing for her book in More Reading) and her disciples as a surefire way to drought-proof gardens while eliminating virtually any need for tillage, weeding, and fertilizing. I have attempted the method in both Southern California and western Oregon—with disastrous results in both locations. What follows in this section is addressed to gardeners who have already read glowing reports about mulching.
Permanent mulching with vegetation actually does not reduce summertime moisture loss any better than mulching with dry soil, sometimes called "dust mulching." True, while the surface layer stays moist, water will steadily be wicked up by capillarity and be evaporated from the soil's surface. If frequent light sprinkling keeps the surface perpetually moist, subsoil moisture loss can occur all summer, so unmulched soil could eventually become desiccated many feet deep. However, capillary movement only happens when soil is damp. Once even a thin layer of soil has become quite dry it almost completely prevents any further movement. West of the Cascades, this happens all by itself in late spring. One hot, sunny day follows another, and soon the earth's surface seems parched.
Unfortunately, by the time a dusty layer forms, quite a bit of soil water may have risen from the depths and been lost. The gardener can significantly reduce spring moisture loss by frequently hoeing weeds until the top inch or two of earth is dry and powdery. This effort will probably be necessary in any case, because weeds will germinate prolifically until the surface layer is sufficiently desiccated. On the off chance it should rain hard during summer, it is very wise to again hoe a few times to rapidly restore the dust mulch. If hand cultivation seems very hard work, I suggest you learn to sharpen your hoe.
A mulch of dry hay, grass clippings, leaves, and the like will also retard rapid surface evaporation. Gardeners think mulching prevents moisture loss better than bare earth because under mulch the soil stays damp right to the surface. However, dig down 4 to 6 inches under a dust mulch and the earth is just as damp as under hay. And, soil moisture studies have proved that overall moisture loss using vegetation mulch slightly exceeds loss under a dust mulch.
West of the Cascades, the question of which method is superior