قراءة كتاب The Art of Inventing
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
that, instead of subtracting one record from another, he had only to find the value of the arc marked off by counting the corresponding number of minutes along the dial.
The inventor had thus gotten rid of the subtraction, but there were several desirable qualities not yet obtained. First, he could not tell from the record alone, whether it was the longer or the shorter arc marked off that was the measure of the period. For instance, he could not tell whether the period was 7 or 53 minutes. This was because the two hand or pointer imprints were exactly alike except in position. So he conceived the idea of making the pointer imprints different in appearance, by providing the pointer die with a mark in line with the pointer, as illustrated in Fig. 4.
The mark and pointer revolve together and either the dies or the platen are so arranged that the mark can be printed without the pointer at the initial imprint and the pointer at the final imprint as in Fig. 5, the mark being printed or not at the final imprint, as desired. This could be done either by allowing the pointer die or the corresponding portion of the platen to remain retracted from the paper during the first printing.

Fig. 2. | |
---|---|
9:23 Initial Time Stamp Record. |
10:15 Final Time Stamp Record. |
Elapsed Time: 10:15-9:23 = 52 minutes. |
To read this record, hours and minutes must be subtracted from hours and minutes, an operation liable to much error.
It could thus be told with certainty from the record alone whether the longer or the shorter arc is the measure of the period, because the beginning of the arc is that indicated by the imprint of the mark without the pointer.
There was still something to be desired. The counting of the minutes along the measuring arc was a waste of time, if the value of the arc could in some way be directly indicated. If the hand were set back to 12 o'clock for the initial imprint, the final imprint would show the hand pointing directly at the minute whose number on the dial is the value of the period, and it would not even be necessary to count. But the setting of the hand back to zero would prevent its making the final imprint of any previously begun record, so that the machine could only be used for one record at a time. It was desirable to have a machine that would record any number of overlapping intervals at the same time, so that one machine would record the intervals of all the telephone conversations under the control of a single operator, or rather of two operators, because both of them could reach the same machine. So it wouldn't do to set the hand back to zero, as the hand must rotate constantly and uniformly. Then why not set the zero up to the hand at each initial imprint? This meant making the dial rotatable, as well as the hand. It gave an initial record like that shown in Fig. 6.

Subtraction eliminated but counting still required and uncertainty whether elapsed period is 7 or 53 minutes.

Hand and zero mark revolving within stationary dial.
The inventor then thought of securing the dial to the pointer die so that they would revolve together, the zero of the dial being in line with the pointer, as illustrated in Fig. 7. This would obviate the necessity of setting the zero of the dial up to the pointer at the initial imprint.

Initial imprint of zero mark alone and final imprint of hand (and zero). Elapsed time, 8 minutes. No subtraction and no uncertainty as to which imprint first, but counting still required.
But again the improvement involved a difficulty. As the dial rotated, its final impressions would never register with its initial impressions and would therefore always destroy them. As the first imprint of the dial was the only useful one, and as the second imprint only made trouble, the inventor conceived the idea of not making any imprint of the dial at the close of the period, and this he accomplished by making the annular portion of the platen covering the dial so that it could be advanced to print or not as desired. As the zero of the dial always marked the beginning of the measuring arc, it served the same purpose as the mark in line with the pointer, and the latter could now be omitted.
The final machine then consists simply of a revolving die which, as shown in Fig. 8, consists of a graduated and progressively numbered dial, having a pointer revolving in line with the zero, and the machine has a platen consisting of an inner circular portion over the pointer and an annular portion over the dial, each portion being operated by a separate handle so that the dial can be printed at the beginning of the period and the pointer alone, at its close.
The final record has an initial imprint of the dial, Fig. 9a, the zero of the dial showing the position of the pointer at the beginning of the period, and a final imprint of the pointer alone, as shown in Fig. 9b, the complete final record, Fig. 9c, consisting of the superimposition of these two records, and showing the pointer in line with that graduation whose number is the value of the period. Here is a record not only involving no subtraction and no uncertainty but not even, counting in its record, and, as it was made without disturbing the motions either of the pointer or dial, any number of records of other periods could have been begun or finished while the machine was measuring the period in question.

Dial moved up to initial position of zero mark. Elapsed time, 11 minutes. No subtraction, no counting, no uncertainty; but only one record possible at a time.
Hiding all the intermediate steps in the evolution of this invention, it seems the result of spontaneous creation, but considering the steps in their successive order, it will be seen that the invention is an evolution from the time-stamp; that logic rendered the effort of the imagination at any one step small by comparison, and that the individual steps might be well within the capacity of a person to whom the spontaneous creation of the final invention might be utterly impossible.
A most interesting example of the evolution of an invention is that of the cord-knotter of the self-binding harvester. The problem here was to devise a mechanism which would take place of the human hands in tying a knot in a cord whose ends had mechanically been brought together around a bundle of grain.
