You are here

قراءة كتاب ABC of Electricity

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
ABC of Electricity

ABC of Electricity

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 2

conveniences which the use of electricity gives us.

Every one knows that, by the laws of multiplication, twice two makes four, and that twice two can never make anything but four. Well, these useful inventions have been made by applying the laws of electricity in certain ways, just as well known, so as to enable us to send in a few moments a message to our absent friends at any distance, to speak with them at a great distance, to light our houses and streets with electric light, and to do many other useful things with quickness and ease.

But you must remember that we do not know what electricity itself really is. We only know how to produce it by certain methods, and we also know what we can do with it when we have obtained it.

In this little book we will try to explain the various ways by which electricity is obtained, and how it is applied to produce the useful results that we see around us.

We will try and make this explanation such that it will encourage many of you to study this very important and interesting subject more deeply.

In the advanced books on electricity there are many technical terms which are somewhat difficult to understand, but in this book it will only be necessary to use a few of the more simple ones, which it will be well for you to learn and understand before going further.


II

DEFINITIONS

The three measurements most frequently used in electricity are

The Volt,
The Ampère,
The Ohm.

We will explain these in their order.


Fig. 1

The Volt.—This term may be better understood by making a comparison with something you all know of. Suppose we have a tank containing one hundred gallons of water, and we want to discharge it through a half-inch pipe at the bottom of the tank. Suppose, further, that we wanted to make the water spout upward, and for this purpose the pipe was bent upward as in Fig. 1.

If you opened the tap the water would spout out and upward as in Fig. 1.


Fig. 2

The cause of its spouting upward would be the weight or pressure of the water in the tank. This pressure is reckoned as so many pounds to the square inch of water.

Now, if the tank were placed on the roof of the house and the pipe brought to the ground as shown in Fig. 2, the water would spout up very much higher, because there would be many more pounds of pressure on account of the height of the pipe.

So, you see, the force or pressure of water is measured in pounds, and, therefore, a pound is the unit of pressure, or force, of water. Now, in electricity the unit of pressure, or force, is called a volt.

This word "volt" does not mean any weight, as the word "pound" weight does. You all know that if you have a pound of water you must have something to hold it, because it has weight, and, consequently, occupies some space. But electricity itself has no weight and therefore cannot occupy any space.

When we desire to carry water into a house or other building we do so by means of hollow pipes, which are usually made of iron. This is the way that water is brought into houses in cities and towns, so that it may be drawn and used in any part of a dwelling. Now, the principal supply usually comes from a reservoir which is placed up on high ground so as to give the necessary pounds of pressure to force the water up to the upper part of the houses. If some arrangement of this kind were not made we could get no water in our bedrooms, because, as you know, water will not rise above its own level unless by force.

The water cannot escape as long as there are no holes or leaks in the iron pipes, but if there should be the slightest crevice in them the water will run out.

In electricity we find similar effects.

The electricity is carried into houses by means of wires which are covered, or insulated, with various substances, such, for instance, as rubber. Just as the iron of the pipes prevents the water from escaping, the insulation of the wire prevents the escape of the electricity.

Now, if we were to cause the pounds of pressure of water, in pipes of ordinary thickness, to be very greatly increased, the pipes could not stand the strain and would burst and the water escape. So it is with electricity. If there were too many volts of pressure the insulation would not be sufficient to hold it and the electricity would escape through the covering, or insulation, of the wire.

It is a simple and easy matter to stop the flow of water from an ordinary faucet by placing your finger over the opening. As the water cannot then flow, your finger is what we will call a non-conductor and the water will be retained in the pipe.

We have just the same effects in electricity. If we place some substance which is practically a non-conductor, or insulator, such as rubber, around an electric wire, or in the path of an electric current, the electricity, acted upon by the volts of pressure, cannot escape, because the insulation keeps it from doing so, just as the iron of the pipe keeps the water from escaping. Thus, you see, the volt does not itself represent electricity, but only the pressure which forces it through the wire.

There are other words and expressions in electricity which are sometimes used in connection with the word "volt." These words are "pressure" and "intensity." We might say, for instance, that a certain dynamo machine had an electromotive force of 110 volts; or that the intensity of a cell of a battery was 2 volts, etc.

We might mention, as another analogy, the pressure of steam in a boiler, which is measured or calculated in pounds, just as the pressure of water is measured. So, we might say that 100 pounds steam pressure used through the medium of a steam-engine to drive a dynamo could thus be changed to electricity at 100 volts pressure.

The Ampère.—Now, in comparing the pounds pressure of water with the volts of pressure of electricity we used as an illustration a tank of water containing 100 gallons, and we saw that this water had a downward force or pressure in pounds. Let us now see what this pressure was acting upon.

It was forcing the quantity of water to spout upward through the end of the pipe. Now, as the quantity of water was 100 gallons, it could not all be forced at once out of the end of the pipe. The pounds pressure of water acting on the 100 gallons would force it out at a certain rate, which, let us say, would be one gallon per minute.

This would be the rate of the flow of water out of the tank.

Thus, you see, we find a second measurement to be considered in discharging the water-tank. The first was the force, or pounds of pressure, and the second the rate at which the quantity of water was being discharged per minute by that pressure.

This second measurement teaches us that a certain quantity will pass out of the pipe in a certain time if the pressure is steady, such quantity depending, of course, on the size or friction resistance of the pipe.

In

Pages