You are here

قراءة كتاب Appletons' Popular Science Monthly, February 1900 Vol. 56, November, 1899 to April, 1900

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Appletons' Popular Science Monthly, February 1900
Vol. 56, November, 1899 to April, 1900

Appletons' Popular Science Monthly, February 1900 Vol. 56, November, 1899 to April, 1900

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

retarding force as much as may be desired. Magnetic brakes are very desirable, as they save the car wheels, and furthermore afford an additional safety in cases where it is necessary to arrest the speed instantly.

The position of the motors with reference to the truck and car wheels is very well shown in Fig. 20, and also the manner in which they are held in place. The covers of the openings through which access to the commutator brushes is obtained are removed from both motors, and in the forward one the top of the commutator and one of the brushes can be readily seen. The manner in which the motors are suspended from the truck is not the same in this figure as in those previously shown, but this is simply because the machines are not made by the same concern, and each manufacturer has his own design.

Fig. 21 shows the appearance of the interior of the controlling switches C C, Figs. 18 and 19. It will be noticed that there are two upright shafts, the ends of which project above the top of the box. The handle h is placed upon the shaft to the left, and k on that to the right. The first is the main controller, and the other is the reversing switch. It will be noticed that the main controller shaft carries a number of circular segments of different lengths; these are so disposed that they come in contact with suitable stationary pieces as the handle h is turned around, and thus vary the path of the current through the motors and the rheostats in the manner required to effect the desired changes in the velocity of the car. The reversing shaft is also provided with a number of segments, but these are not so easily seen, although they can be discerned on close examination. The wires from the cable e e e and also wire d d are attached to the stationary pieces with which the segments carried by the two shafts make contact when the latter are moved around by the motorman. These wires can be seen back of the main switch shaft, and also above the board located at the lower left-hand corner. All these wires enter the controller through an opening in the bottom.


Fig. 21.—View of Interior of Car Controller.

In addition to the apparatus shown in Figs. 18 to 21, electric cars are provided with a safety fuse and a lightning arrester, the object of the latter being to protect the motors from the destructive effects of lightning strokes. The object of the safety fuse is to protect the motor from injury when the current becomes too strong. An electric current in passing through a wire generates heat, and the stronger the current the greater the heat. If the wire is large and the current weak, the heat developed may be insufficient to raise the temperature to a noticeable degree; but, on the other hand, if the wire is small or the current very strong, the heat generated may be capable of raising the temperature of the metal to the fusing point. In fact, the incandescent lamp operates upon this principle; the carbon filament is traversed by a current of a strength sufficient to heat it to a point where it becomes intensely luminous, and sometimes, through accident or otherwise, the current becomes strong enough to melt the filament, and then the light goes out. In an electric motor it is not necessary to raise the temperature of the wire to the melting point to do serious injury; in fact, if the heat is sufficient to char paper or cloth, the machine will be rendered useless until suitable repairs are made. The insulation of the wire coils is made principally of cotton, which is a very good electrical insulator in its natural state, but when carbonized by excessive heat it becomes a conductor. As soon as it becomes a conductor the current is no longer confined to the proper channel, but cuts through the insulation to find the shortest path through the machine. If safety fuses were not provided the danger of destroying the insulation of the motors and thus disabling the car would be decidedly great, for, as already said, the motors can not be stalled with an overload, the only effect produced being a reduction in the speed and an increase in current strength. Now, if there were no way of limiting the increase in current strength the motors, if greatly overloaded, would continue to operate until the insulation gave out. The safety fuse is simply a piece of wire of such size that it will be melted by a current that the motors can carry without being injured; hence when the current strength reaches a point where the safety of the apparatus is endangered the fuse melts and thus breaks the circuit and stops the further flow of current. Fuses are generally made of an alloy that melts at a low temperature, so that the molten metal may not set fire to anything upon which it may fall. These easily fused alloys are inferior to copper as electrical conductors, and on this account the fuse wire is as a rule much larger than that wound upon the motors, which fact makes its action somewhat mysterious to the uninitiated; but whatever its size may be, it is so proportioned that it will melt before the current rises to a strength that would injure the motor coils.

The manner in which the electric current generated in the power house reaches the motors is illustrated in Fig. 22. In this figure four tracks are shown, which may be taken to represent roads running in as many different directions. The three squares at the left side represent generators located in the power house. The circles a a a represent switches, by means of which the generators are connected or disconnected from the trolley lines. A and B represent heavy metallic rods, generally made of copper, with which the generators are connected by means of the switches a a a. These rods are called bus bars. The circles b b b b represent switches by means of which the current is turned on or off from the several tracks.

Pages