قراءة كتاب Aristotle
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
hardly distinguishable from those of Plato except by the fact that, as they are so much at variance with the naturalistic side of his philosophy, they have the appearance of being sudden lapses into an alogical mysticism. We shall find the presence of this "fault" more pronouncedly in his metaphysics, psychology, and ethics than in his theory of knowledge, but it is not absent from any part of his philosophy. He is everywhere a Platonist malgré lui, and it is just the Platonic element in his thought to which it owes its hold over men's minds.
Plato's doctrine on the subject may be stated with enough accuracy for our purpose as follows. There is a radical distinction between sense-perception and scientific knowledge. A scientific truth is exact and definite, it is also true once and for all, and never becomes truer or falser with the lapse of time. This is the character of the propositions of the science which Plato regarded as the type of what true science ought to be, pure mathematics. It is very different with the judgments which we try to base on our sense-perceptions of the visible and tangible world. The colours, tastes, shapes of sensible things seem different to different percipients, and moreover they are constantly changing in incalculable ways. We can never be certain that two lines which seem to our senses to be equal are really so; it may be that the inequality is merely too slight to be perceptible to our senses. No figure which we can draw and see actually has the exact properties ascribed by the mathematician to a circle or a square. Hence Plato concludes that if the word science be taken in its fullest sense, there can be no science about the world which our senses reveal. We can have only an approximate knowledge, a knowledge which is after all, at best, probable opinion. The objects of which the mathematician has certain, exact, and final knowledge cannot be anything which the senses reveal. They are objects of thought, and the function of visible models and diagrams in mathematics is not to present examples of them to us, but only to show us imperfect approximations to them and so to "remind" the soul of objects and relations between them which she has never cognised with the bodily senses. Thus mathematical straightness is never actually beheld, but when we see lines of less and more approximate straightness we are "put in mind" of that absolute straightness to which sense-perception only approximates. So in the moral sciences, the various "virtues" are not presented in their perfection by the course of daily life. We do not meet with men who are perfectly brave or just, but the experience that one man is braver or juster than another "calls into our mind" the thought of the absolute standard of courage or justice implied in the conviction that one man comes nearer to it than another, and it is these absolute standards which are the real objects of our attention when we try to define the terms by which we describe the moral life. This is the "epistemological" side of the famous doctrine of the "Ideas." The main points are two, (1) that strict science deals throughout with objects and relations between objects which are of a purely intellectual or conceptual order, no sense-data entering into their constitution; (2) since the objects of science are of this character, it follows that the "Idea" or "concept" or "universal" is not arrived at by any process of "abstracting" from our experience of sensible things the features common to them all. As the particular fact never actually exhibits the "universal" except approximately, the "universal" cannot be simply disentangled from particulars by abstraction. As Plato puts it, it is "apart from" particulars, or, as we might reword his thought, the pure concepts of science represent "upper limits" to which the comparative series which we can form out of sensible data continually approximate but do not reach them.
In his theory of knowledge Aristotle begins by brushing aside the Platonic view. Science requires no such "Ideas," transcending sense-experience, as Plato had spoken of; they are, in fact, no more than "poetic metaphors." What is required for science is not that there should be a "one over and above the many" (that is, such pure concepts, unrealised in the world of actual perception, as Plato had spoken of), but only that it should be possible to predicate one term universally of many others. This, by itself, means that the "universal" is looked on as a mere residue of the characteristics found in each member of a group, got by abstraction, i.e. by leaving out of view the characteristics which are peculiar to some of the group and retaining only those which are common to all. If Aristotle had held consistently to this point of view, his theory of knowledge would have been a purely empirical one. He would have had to say that, since all the objects of knowledge are particular facts given in sense-perception, the universal laws of science are a mere convenient way of describing the observed uniformities in the behaviour of sensible things. But, since it is obvious that in pure mathematics we are not concerned with the actual relations between sensible data or the actual ways in which they behave, but with so-called "pure cases" or ideals to which the perceived world only approximately conforms, he would also have had to say that the propositions of mathematics are not strictly true. In modern times consistent empiricists have said this, but it is not a position possible to one who had passed twenty years in association with the mathematicians of the Academy, and Aristotle's theory only begins in naturalism to end in Platonism. We may condense its most striking positions into the following statement. By science we mean proved knowledge. And proved knowledge is always "mediated"; it is the knowledge of conclusions from premisses. A truth that is scientifically known does not stand alone. The "proof" is simply the pointing out of the connection between the truth we call the conclusion, and other truths which we call the premisses of our demonstration. Science points out the reason why of things, and this is what is meant by the Aristotelian principle that to have science is to know things through their causes or reasons why. In an ordered digest of scientific truths, the proper arrangement is to begin with the simplest and most widely extended principles and to reason down, through successive inferences, to the most complex propositions, the reason why of which can only be exhibited by long chains of deductions. This is the order of logical dependence, and is described by Aristotle as reasoning from what is "more knowable in its own nature,"[#] the simple, to what is usually "more familiar to us," because less removed from the infinite wealth of sense-perception, the complex. In discovery we have usually to reverse the process and argue from "the familiar to us," highly complex facts, to "the more knowable in its own nature," the simpler principles implied in the facts.