You are here

قراءة كتاب Inheritance of Characteristics in Domestic Fowl

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Inheritance of Characteristics in Domestic Fowl

Inheritance of Characteristics in Domestic Fowl

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 3

offspring. The question may well be asked: What is then the criterion of dominance? The reply is elaborated to the effect that, since dominance is due to the presence of a character and recessiveness to its absence, dominance may fail to develop, but recessiveness never can do so. Consequently two extracted recessives mated inter se can not throw the dominant condition; but two imperfect dominants, even though indistinguishable from recessives, will throw dominants. On the other hand, owing to the very fact that the dominant condition often fails of development, two extracted "pure" dominants will, probably always, throw some apparent "recessives." Now, two syndactyls have not been found that fail (in large families) to throw normals, but extracted normals have been found which, bred inter se, throw only normals; hence, "normal-toe" is recessive. In this character, then, dominance almost always fails to show itself in the heterozygote and often fails in pure dominants.

The series of diminishing potency has now brought us to a point where we can interpret a case of great difficulty, namely, a case of rumplessness. Here a dominant condition was originally mistaken for a recessive condition, because it never fully showed itself in F1 and F2. Nevertheless, in related individuals, the condition is fully dominant. We thus get the notion that a factor that normally tends to the development of a character may, although present, fail to develop the character. Dominance is lacking through impotence.

The last term of the series is seen in the wingless cock which left no wingless offspring in the F1 and F2 generations. In comparison with the results gained with the rumpless cock, winglessness in this strain is probably dominant but impotent.

When a character, instead of being simply present or absent, is capable of infinite gradations, inheritance seems often to be blending and without segregation. Two cases of this sort—booting and nostril-height—are examined, and by the aid of the principle of imperfect dominance the apparent blending is shown to follow the principle of segregation. Booting is controlled by a dominant inhibiting factor that varies greatly in potency, and nostril-height is controlled by an inhibiting factor that stops the over-growth of the nasal flap which produces the narrow nostril.

The extracted dominants show great variability in their progeny, but the extracted recessives show practically none. This is because a positive character may fail to develop; but an absent character can not develop even a little way. The difference in variability of the offspring of two extracted recessives and two extracted dominants is the best criterion by which they may be distinguished, or by which the presence (as opposed to the absence) of a factor may be determined.

The crest of fowl receives especial attention as an example of a character previously regarded as simple but now known to comprise two and probably more factors—a factor for erectness, one for growth, and probably one or more that determine the restriction or extension of the crested area.

The direction of lop of the single comb is an interesting example of a character that seems to be undetermined by heredity. In this it agrees with numerous right and left handed characters. It is not improbable that the character is determined by a complex of causes, so that many independent factors are involved.

A series of studies is presented on the inheritance of plumage color. It is shown that each type of bird has a gametic formula that is constant for the type and which can be used with success to predict the outcome of particular combinations. New combinations of color and "reversions" receive an easy explanation by the use of these factors. The cases of blue, spangled, and barred fowl are shown also to contain mottling or spangling factors.

CHAPTER I.
THE SPLIT OR Y COMB.

A. INTERPRETATION OF THE Y COMB.

When a bird with a single comb, which may be conveniently symbolized as I, is crossed with a bird with a "V" comb such as is seen in the Polish race, and may be symbolized as oo, the product is a split or Y comb. This Y comb is a new form. As we do not expect new forms to appear in hybridization, the question arises, How is this Y comb to be interpreted? Three interpretations seem possible. According to one, the antagonistic characters (allelomorphs) are I comb and oo comb, and in the product neither is recessive, but both dominant. The result is a case of particulate inheritance—the single comb being inherited anteriorly and the oo comb posteriorly. On this interpretation the result is not at all Mendelian.

According to the second interpretation the hereditary units are not what appear on the surface, but each type of comb contains two factors, of which (in each case) one is positive and the other negative. In the case of the I comb the factors are presence of median element and absence of lateral or paired element; and in the case of the oo comb the factors are absence of median element and presence of lateral element. On this hypothesis the two positive factors are dominant and the two negative factors are recessive.

The third hypothesis is intermediate between the others. According to it the germ-cells of the single-combed bird contain a median unit character which is absent in the germ-cells of the Polish or Houdan fowl. This hypothesis supposes further that the absence of the median element is accompanied by a fluctuating quantity of lateral cere, the so-called V comb.

The split comb is obtained whenever the oo comb is crossed with a type containing the median element. Thus, the offspring of a oo comb and a pea comb is a split pea comb, and the offspring of a oo comb and a rose comb is a split rose. The three hypotheses may consequently be tested in three cases where a split comb is produced.

Table 1.

    I       Y   No median.
I × I 100 0 0
 I × Y 50 50 0
 I × no median 0 100 0
 Y × no median 0 50 50
 No median × no median     0 0 100

The first and third hypotheses will give the same statistical result, namely,

Pages