قراءة كتاب Scientific Romances (First Series)

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific Romances (First Series)

Scientific Romances (First Series)

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 7

the effect of a centre of attraction lying out of our space, and acting on all the matter in it? The effect of such a centre of attraction would not be to produce motion in any known direction, because it does not lie off in any known direction.

Let us pass to the corresponding case in three and two dimensions, instead of four and three. Let us imagine a plane lying horizontally, and in it some creatures whose experience was confined to it. If now some water or other liquid were poured on to the plane, the creatures, becoming aware of its presence, would find that it had a tendency to spread out all over the plane. In fact it would not be to them as a liquid is to us—it would rather correspond to a gas. For a gas, as we know it, tends to expand in every direction, and gradually increase so as to fill the whole of space. It exercises a pressure on the walls of any vessel in which we confine it.

The liquid on the plane expands in all the dimensions which the two-dimensional creatures on the plane know, and at the same time becomes smaller in the third dimension, its absolute quantity remaining unchanged. In like manner we might suppose that gases (which by expansion become larger in the dimensions that we know) become smaller in the fourth dimension.

The cause in this case would have to be sought for in an attractive force, acting with regard to our space as the force of gravity acts with regard to a horizontal plane.

Can we suppose that there is a centre of attraction somewhere off in the fourth dimension, and that the gases, which we know are simply more mobile liquids, expanding out in every direction under its influence. This view receives a certain amount of support from the fact proved experimentally that there is no absolute line of demarcation between a liquid and a gas. The one can be made to pass into the other with no moment intervening in which it can be said that now a change of state has taken place.

We might then suppose that the matter we know extending in three dimensions has also a small thickness in the fourth dimension; that solids are rigid in the fourth as in the other three dimensions; that liquids are too coherent to admit of their spreading out in space, and becoming thinner in the fourth dimension, under the influence of an attractive centre lying outside of our space; but that gases, owing to the greater mobility of their particles, are subject to its action, and spread out in space under its influence, in the same manner that liquids, under the influence of gravity, spread out on a plane.

Then the density of a gas would be a measure of the relative thickness of it in the fourth dimension: and the diminution of the density would correspond to a diminution of the thickness in the fourth dimension. Could this supposition be tested in any way?

Suppose a being confined to a plane; if the plane is moved far off from the centre of attraction lying outside it, he would find that liquids had less tendency to spread out than before.

Or suppose he moves to a distant part of the plane so that the line from his position to the centre of attraction lies obliquely to the plane; he would find that in this position a liquid would show a tendency to spread out more in one direction than another.

Now our space considered as lying in four-dimensional space, as a plane does in three-dimensional space, may be shifted. And the expansive force of gases might be found to be different at different ages. Or, shifting as we do our position in space during the course of the earth’s path round the sun, there might arise a sufficient difference in our position in space, with regard to the attractive centre, to make the expansive force of gases different at different times of the year, or to cause them to manifest a greater expansive force in one direction than in another.

But although this supposition might be worked out at some length, it is hard to suppose that it could afford any definite test of the physical existence of a fourth dimension. No test has been discovered which is decisive. And, indeed, before searching for tests, a theoretical point of the utmost importance has to be settled. In discussing the geometrical properties of straight lines and planes, we suppose them to be respectively of one and two dimensions, and by so doing deny them any real existence. A plane and a line are mere abstractions. Every portion of matter is of three dimensions. If we consider beings on a plane not as mere idealities, we must suppose them to be of some thickness. If their experience is to be limited to a plane this thickness must be very small compared to their other dimensions. Transferring our reasoning to the case of four dimensions, we come to a curious result.

If a fourth dimension exists there are two possible alternatives.

One is, that there being four dimensions, we have a three-dimensional existence only. The other is that we really have a four-dimensional existence, but are not conscious of it. If we are in three dimensions only, while there are really four dimensions, then we must be relatively to those beings who exist in four dimensions, as lines and planes are in relation to us. That is, we must be mere abstractions. In this case we must exist only in the mind of the being that conceives us, and our experience must be merely the thoughts of his mind—a result which has apparently been arrived at, on independent grounds, by an idealist philosopher.

The other alternative is that we have a four-dimensional existence. In this case our proportions in it must be infinitely minute, or we should be conscious of them. If such be the case, it would probably be in the ultimate particles of matter, that we should discover the fourth dimension, for in the ultimate particles the sizes in the three dimensions are very minute, and the magnitudes in all four dimensions would be comparable.

The preceding two alternative suppositions are based on the hypothesis of the reality of four-dimensional existence, and must be conceived to hold good only on that hypothesis.

It is somewhat curious to notice that we can thus conceive of an existence relative to which that which we enjoy must exist as a mere abstraction.

Apart from the interest of speculations of this kind they have considerable value; for they enable us to express in intelligible terms things of which we can form no image. They supply us, as it were, with scaffolding, which the mind can make use of in building up its conceptions. And the additional gain to our power of representation is very great.

Many philosophical ideas and doctrines are almost unintelligible because there is no physical illustration which will serve to express them. In the imaginary physical existence which we have traced out, much that philosophers have written finds adequate representation. Much of Spinoza’s Ethics, for example, could be symbolized from the preceding pages.

Thus we may discuss and draw perfectly legitimate conclusions with regard to unimaginable things.

It is, of course, evident that these speculations present no point of direct contact with fact. But this is no reason why they should be abandoned. The course of knowledge is like the flow of some mighty river, which, passing through the rich lowlands, gathers into itself the contributions from every valley. Such a river may well be joined by a mountain stream, which, passing with difficulty along the barren highlands, flings itself into the greater river down some precipitous descent, exhibiting at the moment of its union the spectacle of the utmost beauty of which the river system is capable. And such a stream is no inapt symbol of a line of mathematical thought, which, passing through difficult and abstract regions, sacrifices for the sake of its crystalline clearness the richness that comes

Pages