You are here
قراءة كتاب The National Geographic Magazine, Vol. I., No. 1, October, 1888
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

The National Geographic Magazine, Vol. I., No. 1, October, 1888
their true arrangement. The face of nature thus becomes alive and full of expression, and the conception of its change becomes so real that one almost expects to see the change in successive visits to one place.
Now consider the deductive application of this principle. Having recognized the sequence of forms developed during the wasting life of a single structure, reverse the conception and we have a powerful geographic method for geologic investigation. On entering a new country, apply there the principles learned from the inductive study of familiar regions, and much past history is revealed; the age of mountains may be deduced from their form as well as from their rocks; the altitudes at which a district has stood may be determined by traces of its old base levels, of which we learn nothing from the ordinary routine of geologic observation, that is, from a study of the structure and age of the rocks themselves. The principle is commonly employed nowadays, but its methods are not formulated, and its full value is hardly yet perceived. Heim has found traces of successive elevations in the Alps, proved by incipient base levels at several consistent altitudes on the valley slopes. Newberry, Powell and Dutton have worked out the history of the plateau and cañon region from its topography; Chamberlin and Salisbury write of the young and old topographic forms of the drift-covered and the driftless areas in Wisconsin; LeConte and Stephenson have interpreted chapters in the history of California and Pennsylvania from the form of the valleys. Recently McGee has added most interesting chapters to the history of our middle Atlantic slope, in an essay that gives admirable practical exposition of the geographic methods. In the light of these original and suggestive studies one may contend that when geographic forms in their vast variety are thus systematically interpreted as the surface features of as many structures, belonging to a moderate number of families and having expression characteristic of their age and accidents, their elevation and opportunity, then geography will be for the wasting lands what palæontology has come to be for the growing ocean floors.
An interesting comparison may be drawn here. Fossils were first gathered and described as individual specimens, with no comprehension of their relationships and their significance. It was later found that the fossils in a certain small part of the world, England—that wonderful epitome of geologic history—were arranged in sequences in the bedded rocks containing them, certain groups of forms together, successive groups in shelves, as it were, one over another. Then it was discovered that the local English scale had a wider application, and finally it has come to be accepted as a standard, with certain modifications, for the whole world. The exploring geologist does not now wait to learn if a formation containing trilobites underlies another containing ammonites, but on finding the fossils in the two, confidently and as far as we know correctly concludes that such is their relative position. Thus the sequence of submarine processes is made out by the sequence of organic forms. In brief, palæontology has passed largely from the inductive to the deductive stage.
The geographer first regarded the features of the land as completed entities, with whose origin he was in no wise concerned. Later it was found that some conception of their origin was important in appreciating their present form, but they were still regarded as the product of past, extinct processes. This view has been in turn displaced by one that considers the features of the land as the present stage of a long cycle of systematically changing forms, sculptured by processes still in operation. Now recognizing the sequence of changing forms, we may determine the place that any given feature occupies in the entire sequence through which it must pass in its whole cycle of development. And then reversing this conception we are just beginning to deduce the past history of a district by the degree of development of its features. Geography is, in other words, entering a deductive stage, like that already reached by palæontology.
The antecedent of deductive topography is the systematic study of land geography. The surface of the land is made up of many more or less distinct geographic individuals, every individual consisting of a single structure, containing many parts or features whose expression varies as the processes of land sculpture carry the whole through its long cycle of life. There is endless variety among the thousands of structures that compose the land, but after recognizing a few large structural families, the remaining differences may be regarded as individual. In a given family, the individuals present great differences of expression with age, as between the vigorous relief of the young Himalaya and the subdued forms of the old Appalachians; or with elevation over base level, as between the gentle plain of the low Atlantic coast and the precocious high plateaus of the Colorado river region; or with opportunity, as between the last named plateaus with exterior drainage and the high plains of the Great Basin, whose waters have no escape save by evaporation or high level overflow; or with complexity of history, as between the immature, undeveloped valleys of the lava block country of southern Oregon, and the once empty, then gravel-filled, and now deeply terraced inner valleys of the Himalaya. When thus studied, the endless variety of the topography will be considered in its proper relations, and it will not seem as hopeless as it does now to gain a rational understanding and appreciation of geographic morphology.
We should first recognize the fact that a geographic individual is an area, large or small, whose surface form depends on a single structure. Boundaries may be vague, different individuals may be blended or even superposed, but in spite of the indefiniteness, the attempt to sub-divide a region into the individuals that compose it will be found very profitable. In a large way the Appalachian plateau is an individual; the Adirondacks, the terminal moraine of the second glacial epoch are others. In a small way, a drumlin, a fan delta, a mesa, are individuals. The linear plateaus of middle Pennsylvania are hybrids between the well-developed linear ridges of the mountains farther east and the irregular plateau masses farther west.
A rough classification of geographic individuals would group them under such headings as plains, plateaus, and rough broken countries of horizontal structure; mountains of broken, tilted or folded structure, generally having a distinct linear extension; volcanoes, including all the parts from the bottom of the stem or neck, up to the lateral subterranean expansions known as laccolites, and to the surface cones and flows; glacial drift; wind drift. The agents which accomplished the work of denudation are also susceptible of classification: rivers according to the arrangement of their branches, and their imperfections in the form of lakes and glaciers. The valleys that rivers determine may be considered as the converse of the lands in which they are cut; and the waste of the land on the way to the sea is susceptible of careful discrimination: local soil, talus, alluvial deposits, fan cones and fan deltas, flood plains and shore deltas. Their variations dependent on climatic conditions are of especial importance. The structures formed along shore lines are also significant. This list is intentionally brief, and the lines between its divisions are not sharply drawn. It undoubtedly requires discussion and criticism before adoption. It differs but slightly from the common geographic stock in trade, but for its proper application it requires that the geographer should be in some degree a geologist.
The changes in any geographic individual from the time when it was offered to the destructive forces to the end of its life, when it is worn down to a featureless base level surface, are worthy of the most attentive study. The immaturity of the broken