أنت هنا

قراءة كتاب On Laboratory Arts

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
On Laboratory Arts

On Laboratory Arts

تقييمك:
0
لا توجد اصوات
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

joint, can scarcely ever be repaired in the case of soda glass apparatus, even when the glass is quite thin and the dimensions small.

It should also be mentioned that flint glass has a much more brilliant appearance than soda glass. Of course, there is a considerable difference between different kinds of flint glass as to the melting point, and this may account for the divergency of the statements usually met with as to its fusibility compared with that of soda glass. The kind of flint glass made by Messrs. Powell becomes distinctly soft soon after it is hot enough to be appreciably luminous in a darkened room, and at a white heat is very fluid. This fluidity, though of advantage to the practised worker, is likely to give a beginner some trouble.

§ 8. As against the advantages enumerated, there are some drawbacks. The one which will first strike the student is the tendency of the glass to become reduced in the flame of the blow-pipe. This can be got over by proper adjustment of the flame, as will be explained later on. A more serious drawback in exact work is the following. In making a joint with lead glass it is quite possible to neglect to fuse the glass completely together at every point; in fact, the joint will stand perfectly well even if it be left with a hole at one side, a thing which is quite impossible with soft soda glass, or is at least exceedingly unusual. An accident of this kind is particularly likely to happen if the glass be at all reduced. Hence, if a joint does not crack when cold, the presumption is, in the case of soda glass, that the joint is perfectly made, and will not allow of any leak; but this is not the case with flint glass, for which reason all joints between flint glass tubes require the most minute examination before they are passed. If there are any air bubbles in the glass, especial care must be exercised.

§ 9. Hard or Bohemian, Glass. —

This is, of course, used where high temperatures are to be employed, and also in certain cases where its comparative insolubility in water is of importance. It is very unusual for the investigator to have to make complicated apparatus from this glass. Fused joints may be made between hard glass and flint glass without using enamel, and though they often break in the course of time, still there is no reason against their employment, provided the work be done properly, and they are not required to last too long.

§ 10. On the Choice of Sizes of Glass Tube. —

It will be found that for general purposes tubes about one-quarter inch in inside diameter, and from one-twentieth to one-fortieth of an inch thick, are most in demand. Some very thin soda glass of these dimensions (so-called "cylinder" tubes) will be found very handy for many purposes. For physico-chemical work a good supply of tubing, from one-half to three-quarters of an inch inside diameter, and from one-twentieth to one-eighth inch thick, is very necessary. A few tubes up to three inches diameter, and of various thicknesses, will also be required for special purposes.

Thermometer and "barometer" tubing is occasionally required, the latter, by the way, making particularly bad barometers. The thermometer tubing should be of all sizes of bore, from the finest obtainable up to that which has a bore of about one-sixteenth of an inch. Glass rods varying from about one-twentieth of an inch in diameter up to, say, half an inch will be required, also two or three sticks of white enamel glass for making joints.

To facilitate choice, there is appended a diagram of sizes from the catalogue of a reliable German firm, Messrs. Desaga of Heidelberg, and the experimenter will be able to see at a glance what sizes of glass to order. It is a good plan to stock the largest and smallest size of each material as well as the most useful working sizes.

images/Image27.gifFig. 1.

§ 11. Testing Glass. —

"Reject glass which has lumps or knots, is obviously conical, or has long drawn-out bubbles running through the substance." If a scratch be made on the surface of a glass tube, and one end of the scratch be touched by a very fine point of fused glass, say not more than one-sixteenth inch in diameter, the tube, however large it is (within reason), ought to crack in the direction of the scratch. If a big crack forms and does not run straight, but tends to turn longitudinally, it is a sign that the glass is ill annealed, and nothing can be done with it. If such glass be hit upon in the course of blow-pipe work, it is inadvisable to waste time upon it; the best plan is to reject it at once, and save it for some experiment where it will not have to be heated.

The shortest way of selecting glass is to go to a good firm, and let it be understood that if the glass proves to be badly annealed it will be returned. Though it was stated above that the glass should not be distinctly conical, of course allowance must be made for the length of the pieces, and, on the other hand, a few highly conical tubes will be of immense service in special cases, and a small supply of such should be included.

The glass, as it is obtained, should be placed in a rack, and covered by a cloth to reduce the quantity of dust finding its way into the tubes. It has been stated by Professor Ostwald that tubes when reared up on end tend to bend permanently. I have not noticed this with lead glass well supported. Each different supply should be kept by itself and carefully described on a label pasted on to the rack, and tubes from different lots should not be used for critical welds. This remark is more important in the case of soda than of lead glass.

In the case of very fine thermometer tubes it will be advisable to cover the ends with a little melted shellac, or, in special cases, to obtain the tubes sealed from the works. Soda glass can generally be got in rather longer lengths than lead glass; the longer the lengths are the better, for the waste is less.

It is useful to be able to distinguish the different kinds of glass by the colour. This is best observed by looking towards a bright surface along the whole length of the tube and through the glass. Lead glass is yellow, soda glass is green, and hard glass purple in the samples in my laboratory, and I expect this is practically true of most samples. [Footnote: Some new lead glass I have is also almost purple in hue. If any doubt exists as to the kind of glass, it may be tested at once in the blow-pipe flame, or by a mixture of oils of different refractive indices, as will be explained later.]

§ 12. The question of the solubility of glass in reagents is one of great importance in accurate work, though it does not always meet with the attention it deserves. It is impossible here to go into the matter with sufficient detail, and the reader is therefore referred to the Abstracts of the Chemical Society, particularly for the years 1889 and 1892. The memoir by F. Kohlrausch, Wied. Ann. xliv., should be consulted in the original. The following points may be noted. A method of testing the quality of glass is given by Mylius (C. S. J. Abstracts, 1889, p. 549), and it is stated that the resistance of glass to the action of water can generally be much increased by leaving it in contact with cold water for several days, and then heating it to 300° to 400° C. This improvement seems to be due to the formation of a layer of moist silica on the surface, and its subsequent condensation into a resisting layer by the heating. Mylius (C. S. J. Abstracts, 1892, p. 411), and Weber, and Sauer (C. S. J. Abstracts, 1892, p. 410) have also shown that the best glass for general chemical purposes consists of

الصفحات