قراءة كتاب Barometer and Weather Guide

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Barometer and Weather Guide

Barometer and Weather Guide

تقييمك:
0
لا توجد اصوات
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

by reference to the motion of water drawn off from a reservoir by a small opening below; or by similar upward draught through a syphon; or by a gradual pouring in at the upper surface.

From a slight motion at the commencement, affecting only that portion of the fluid adjoining either of those places of diminution or repletion, gradually all the water becomes influenced and acquires more or less rapid movement. But suppose a long reservoir or canal of fluid which has two such points of exhaustion or two of such repletion (as imagined above), and that one of either is near each end of the vessel. If each aperture be opened at the same moment, equal effects will be caused in each half of the fluid towards either end of the vessel, but in the middle there must be a neutral point at which the water falls, yet has no horizontal motion. The converse takes place in raising the level. And in the case of fluid drawn off or diminished in weight at one end while increased by repletion at the other, the whole body of water will move similarly to that in the former vessel, but unequally. Hence it is evident, that before horizontal motion occurs, an augmentation or a diminution of pressure must take place somewhere more or less remote; and so it is with the lighter fluid atmosphere,—which has centres, lines, or areas of depression towards which currents flow.

Such considerations show in some degree why the barometric changes usually precede, but sometimes only accompany, changes of weather: and, though very rarely, occur without any sensible alteration in the wind current of the atmosphere. An observer may be near a central point towards which the surrounding fluid tends,—or from which it diverges. He may be at the very farthest limit of the portion of fluid that is so influenced. He may be at an intermediate point—or he may be between bodies of atmosphere tending towards opposite directions.

It has been said, that "a whirlwind which sets an extended portion of the atmosphere into a state of rapid revolution diminishes the pressure of the atmosphere over that portion of the earth's surface, and most of all at the centre of the whirl. The depth of the compressing column of air will, at the centre, be least, and its weight will be diminished in proportion to the violence of the wind." Yet this has been controverted with respect to the general effect of air in horizontal motion, and the depth of the column in question.

Certainly there are two kinds of whirlwinds—one caused by rarefaction, tending to lighten vertical pressure under the vortex, though not, perhaps, under all the current drawn towards it; and the other, a consequence of opposing winds, which occasion huge eddies or whirlwinds of compression.

Some whirlwinds are accompanied by rushes from the upper atmosphere, from the colder regions, which, mingling with warmer and moister air near the sea, cause dense clouds. About their centre it sometimes happens that the barometer falls as much as two or three inches, showing a diminution of atmospheric pressure by nearly a tenth part; when it should be expected, from physical considerations alone, that very dense clouds would be formed.[24]


The column of mercury falls about one tenth of an inch for each of the first few hundred feet above the sea level, but varying when it becomes much more elevated.[25] Due allowance, therefore, should be made in observing, when on high land.

The tides are affected by atmospheric pressure, so much that a rise of one inch in the barometer will have a corresponding fall in the tides of nine to sixteen inches, or about one foot for each inch.[26]


Vessels sometimes enter docks, or even harbours, where they have scarcely a foot of water more than their draught; and as docking, as well as launching large ships, requires a close calculation of height of water, the state of the barometer becomes of additional importance on such occasions.


To render these pages rather more useful at sea, in any part of the world, a few words about squalls and hurricanes are here offered to the young seaman.

Generally, squalls are preceded, or accompanied, or followed by clouds; but the very dangerous "white squall" (of the West Indies and other regions), is indicated only by a rushing sound, and by white wave crests.

"Descending squalls" come slanting downwards, off high land,[27] or from upper regions of atmosphere. They are dangerous, being sometimes violently strong.

A squall cloud that can be seen through or under is not likely to bring, or be accompanied by, so much wind as a dark continued cloud extending beyond the horizon. How the comparative hardness or softness of clouds foretells more or less wind or rain, was stated in pages 13 and 14.

The expressions "hardening up," "softening," or looking "greasy," are familiar to seamen: and such very sure indications are the appearances so designated, that they can hardly be mistaken.

The rapid or slow rise of a squall cloud—its more or less disturbed look—that is, whether its body is much agitated, and changing form continually, with broken clouds, or scud, flying about—or whether the mass of cloud is shapeless and nearly quiet, though floating onwards across the sky—foretells more or less wind accordingly.

An officer of a watch, with a good eye for clouds and signs of changing weather, may save his men a great deal of unnecessary exposure, as well as work, besides economising sails, spars, and rigging.

In some of the "saws" about wind and weather, there is so much truth that, though trite and simple, their insertion here can do no harm.

الصفحات