قراءة كتاب Scientific American Supplement, No. 647, May 26, 1888
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
each of these three machines, we will work them all at the same time.
The large frictional machine which is in use for this comparison is so well known by you that a better standard could not be desired.
In conclusion, I may be permitted to say that it is fortunate I had not read the opinions of Sir William Thomson and Professor Holtz, as quoted in the earlier part of my lecture, previous to my own practical experiments. For had I read such opinions from such authorities, I should probably have accepted them without putting them to practical test. As the matter stands, I have done those things which they said I ought not to have done, and I have left undone those which they said I ought to have done, and by so doing I think you must freely admit that I have produced an electric generating machine of great power, and have placed in the hands of the physicist, for the purposes of public demonstration or original research, an instrument more reliable than anything hitherto produced.
Lecture delivered at the Royal Institution, April 27, 1888. For the above and for our illustrations we are indebted to Engineering.
Violet Copying Ink.—Dissolve 40 parts of extract of logwood, 5 of oxalic acid and 30 parts of sulphate of aluminium, without heat, in 800 parts of distilled water and 10 parts of glycerine; let stand twenty-four hours, then add a solution of 5 parts of bichromate of potassium in 100 parts of distilled water, and again set aside for twenty-four hours. Now raise the mixture once to boiling in a bright copper boiler, mix with it, while hot, 50 parts of wood vinegar, and when cold put into bottles. After a fortnight decant it from the sediment. In thin layers this ink is reddish violet; it writes dark violet and furnishes bluish violet copies.
SIBLEY COLLEGE LECTURES.—1887-88.
BY THE CORNELL UNIVERSITY NON-RESIDENT LECTURERS IN MECHANICAL ENGINEERING.
The Evolution of the Modern Mill.1
By C. J. H. Woodbury, Boston, Mass.
The great factories of the textile industries in this country are fashioned after methods peculiarly adapted to the purposes for which they are designed, particularly as regards the most convenient placing of machinery, the distribution of power, the relation of the several processes to each other in the natural sequence of manufacture, and the arrangement of windows securing the most favorable lighting. The floors and roofs embody the most economical distribution of material, and the walls furnish examples of well known forms of masonry originating with this class of buildings.
These features of construction have not been produced by a stroke of genius on the part of any one man. There has been no Michael Angelo, no Sir Christopher Wren, whose epitaph bids the reader to look around for a monument; but the whole has been a matter of slow, steady growth, advancing by hair's breadth; and, as the result of continual efforts to adapt means to ends, an inorganic evolution has been effected, resulting in the survival of the fittest, and literally pushing the weaker to the wall.
This advance in methods has, like all inventions, resulted in the impairment of invested capital. There are hundreds of mill buildings, the wonder of their day, now used for storage because they cannot be employed to sufficient advantage in manufacturing purposes to compete with the facilities furnished by mills of later design. Thus their owners have been compelled to erect new buildings, and, as far as the original purpose of manufacturing is concerned, to abandon their old mills.
In the case of a certain cotton mill built about thirty years ago, and used for the manufacture of colored goods of fancy weave, the owners added to the plant by constructing a one story mill, which proved to be peculiarly adapted to this kind of manufacture, by reason of added stability, better light, and increased facilities for transferring the stock in process of manufacture; and they soon learned not only that the old mill could not compete with the new one, but that they could not afford to run it at any price; the annual saving in the cost of gas, as measured by the identical meter used to measure the supply to the old mill, being six per cent. on the cost of the new mill.
In another instance, one of two cordage mills burned, and a new mill of one story construction was erected in its place. The advantage of manufacture therein was so great that the owners of the property changed the remaining old mill into a storehouse; and now, as they wish to increase their business, it is to be torn down as a cumberer of the ground, to make room for a building of similar construction to the new mill.
It is true that such instances pertain more particularly to industries and lines of manufacture where competition is close and conditions are exacting. Still they apply in a greater or less degree to nearly every industrial process in which a considerable portion of the expense of manufacture consists in the application of organized labor to machines of a high degree of perfection.
These changes have been solely due to the differences in the conditions imposed by improvement in the methods of manufacture. The early mills of this country were driven by water power, and situated where that could be developed in the easiest manner. They were therefore placed in the narrow valleys of rapid watercourses. The method of applying water power in that day being strictly limited to placing the overshot or breast wheel in the race leading from the canal to the river, the mill was necessarily placed on a narrow strip of land between these two bodies of water, with the race-way running under the mill.
To meet these conditions of location, which was limited to this strip of land, the mill must be narrow and short, and the requisite floor area must be obtained by adding to the number of stories. It was essential that the roof of such a mill should be strong and well braced in order to sustain the excessive stress brought to bear upon it. The old factory roof was a curious structure, with eaves springing out of the edge of hollow cornices, the roof rising sharply until about six feet above the attic floor, with an upright course of about three feet, filled with sashes reaching to a second roof, which, at a more moderate pitch than the first slope, trended to the ridge.
The attic was reduced to an approximately square room, by placing sheathing between the columns underneath the sashes, and ceiling underneath the collar beams above; thus forming a cock-loft above and concealed spaces at the sides which diminished the practically available floor space in the attic. This cock-loft and these concealed spaces became receptacles for rubbish and harbors for vermin, both of which were frequent causes of fire.
The floors of such a mill were similar in their arrangement to those of a dwelling. Joists connecting the beams supported the floor; and the under side was covered over by sheathing or lath and plaster, thus forming, as in the case of the roof, hollow spaces which were a source of danger. This method caused at the same time an extravagant distribution of material, by the prodigal use of lumber and the unnecessary thickness of such floors, and entailed an excessive amount of masonry in the walls.
Mills built after this manner were frequently in odd dimensions; and the machinery was necessarily placed in diversified arrangement, calling forth a similar degree of wasted skill as that used in making a