أنت هنا

قراءة كتاب A Text-Book of Astronomy

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
A Text-Book of Astronomy

A Text-Book of Astronomy

تقييمك:
0
لا توجد اصوات
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 5

the horizon for use in observation is as follows: Place a slate or a pane of glass upon a table in the sunshine. Slightly moisten its whole surface and then pour a little more water upon it near the center. If the water runs toward one side, thrust the edge of a thin wooden wedge under this side and block it up until the water shows no tendency to run one way rather than another; it is then level and a part of the plane of the horizon. Get several wedges ready before commencing the experiment. After they have been properly placed, drive a pin or tack behind each one so that it may not slip.

5. Taking the sun's altitude. Exercise 4.—Prepare a piece of board 20 centimeters, or more, square, planed smooth on one face and one edge. Drive a pin perpendicularly into the face of the board, near the middle of the planed edge. Set the board on edge on the horizon plane and turn it edgewise toward the sun so that a shadow of the pin is cast on the plane. Stick another pin into the board, near its upper edge, so that its shadow shall fall exactly upon the shadow of the first pin, and with a watch or clock observe the time at which the two shadows coincide. Without lifting the board from the plane, turn it around so that the opposite edge is directed toward the sun and set a third pin just as the second one was placed, and again take the time. Remove the pins and draw fine pencil lines, connecting the holes, as shown in Fig. 4, and with the protractor measure the angle thus marked. The student who has studied elementary geometry should be able to demonstrate that at the mean of the two recorded times the sun's altitude was equal to one half of the angle measured in the figure.

Fig. 4.—Taking the sun's altitude.Fig. 4.—Taking the sun's altitude.

When the board is turned edgewise toward the sun so that its shadow is as thin as possible, rule a pencil line alongside it on the horizon plane. The angle which this line makes with a line pointing due south is called the sun's azimuth. When the sun is south, its azimuth is zero; when west, it is 90°; when east, 270°, etc.

Exercise 5.—Let a number of different students take the sun's altitude during both the morning and afternoon session and note the time of each observation, to the nearest minute. Verify the setting of the plane of the horizon from time to time, to make sure that no change has occurred in it.

6. Graphical representations.—Make a graph (drawing) of all the observations, similar to Fig. 5, and find by bisecting a set of chords g to g, e to e, d to d, drawn parallel to B B, the time at which the sun's altitude was greatest. In Fig. 5 we see from the intersection of M M with B B that this time was 11h. 50m.

The method of graphs which is here introduced is of great importance in physical science, and the student should carefully observe in Fig. 5 that the line B B is a scale of times, which may be made long or short, provided only the intervals between consecutive hours 9 to 10, 10 to 11, 11 to 12, etc., are equal. The distance of each little circle from B B is taken proportional to the sun's altitude, and may be upon any desired scale—e. g., a millimeter to a degree—provided the same scale is used for all observations. Each circle is placed accurately over that part of the base line which corresponds to the time at which the altitude was taken. Square ruled paper is very convenient, although not necessary, for such diagrams. It is especially to be noted that from the few observations which are represented in the figure a smooth curve has been drawn through the circles which represent the sun's altitude, and this curve shows the altitude of the sun at every moment between 9 A. M. and 3 P. M. In Fig. 5 the sun's altitude at noon was 57°. What was it at half past two?

Fig. 5.—A graph of the sun's altitude.Fig. 5.—A graph of the sun's altitude.

7. Diameter of a distant object.—By sighting over a protractor, measure the angle between imaginary lines drawn from it to the opposite sides of a window. Carry the protractor farther away from the window and repeat the experiment, to see how much the angle changes. The angle thus measured is called "the angle subtended" by the window at the place where the measurement was made. If this place was squarely in front of the window we may draw upon paper an angle equal to the measured one and lay off from the vertex along its sides a distance proportional to the distance of the window—e. g., a millimeter for each centimeter of real distance. If a cross line be now drawn connecting the points thus found, its length will be proportional to the width of the window, and the width may be read off to scale, a centimeter for every millimeter in the length of the cross line.

The astronomer who measures with an appropriate instrument the angle subtended by the moon may in an entirely similar manner find the moon's diameter and has, in fact, found it to be 2,163 miles. Can the same method be used to find the diameter of the sun? A planet? The earth?


CHAPTER II

THE STARS AND THEIR DIURNAL MOTION

8. The stars.—From the very beginning of his study in astronomy, and as frequently as possible, the student should practice watching the stars by night, to become acquainted with the constellations and their movements. As an introduction to this study he may face toward the north, and compare the stars which he sees in that part of the sky with the map of the northern heavens, given on Plate I, opposite page 124. Turn the map around, upside down if necessary, until the stars upon it match the brighter ones in the sky. Note how the stars are grouped in such conspicuous constellations as the Big Dipper (Ursa Major), the Little Dipper (Ursa Minor), and Cassiopeia. These three constellations should be learned so that they can be recognized at any time.

The names of the stars.—Facing the star map

الصفحات