أنت هنا

قراءة كتاب Man's Place in the Universe A Study of the Results of Scientific Research in Relation to the Unity or Plurality of Worlds, 3rd Edition

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Man's Place in the Universe
A Study of the Results of Scientific Research in Relation to the Unity or Plurality of Worlds, 3rd Edition

Man's Place in the Universe A Study of the Results of Scientific Research in Relation to the Unity or Plurality of Worlds, 3rd Edition

تقييمك:
0
لا توجد اصوات
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 7

those who have written specially on the question of the Plurality of Worlds, because the works referred to have been very widely read and have influenced educated opinion throughout the world. Moreover, Mr. Proctor, in his last work on the subject, speaks of the theory as being 'identified with modern astronomy'; and in fact popular works still discuss it. But all these follow the same general line of argument as those already referred to, and the curious thing is that while overlooking many of the most essential conditions they often introduce others which are by no means essential—as, for instance, that the atmosphere must have the same proportion of oxygen as our own. They seem to think that if any of our quadrupeds or birds taken to another planet could not live there, no animals of equally high organisation could inhabit it; entirely overlooking the very obvious fact that, supposing, as is almost certain, that oxygen is necessary for life, then, whatever proportion of oxygen within certain limits was present, the forms of life that arose would necessarily be organised in adaptation to that proportion, which might be considerably less or greater than on the earth.

The present volume will show how extremely inadequate has been the treatment of this question, which involves a variety of important considerations hitherto altogether overlooked. These are extremely numerous and very varied in their character, and the fact that they all point to one conclusion—a conclusion which so far as I am aware no previous writer has reached—renders it at least worthy of the careful consideration of all unbiassed thinkers. The whole subject is one as to which no direct evidence is obtainable, but I venture to think that the convergence of so many probabilities and indications towards a single definite theory, intimately connected with the nature and destiny of man himself, raises this theory to a very much higher level of probability than the vague possibilities and theological suggestions which are the utmost that have been adduced by previous writers.

In order to make every step of my argument clearly intelligible to all educated readers, it will be necessary to refer continually to the marvellous extension of our knowledge of the universe obtained during the last half-century, and constituting what is termed the New Astronomy. The next chapter will therefore be devoted to a popular exposition of the new methods of research, so that the results reached, which will have to be referred to in succeeding chapters, may be not only accepted, but clearly understood.


CHAPTER III

THE NEW ASTRONOMY

During the latter half of the nineteenth century discoveries were made which extended the powers of astronomical research into entirely new and unexpected regions, comparable to those which were opened up by the discovery of the telescope more than two centuries before. The older astronomy for more than two thousand years was purely mechanical and mathematical, being limited to observation and measurement of the apparent motions of the heavenly bodies, and the attempts to deduce, from these apparent motions, their real motions, and thus determine the actual structure of the solar system. This was first done when Kepler established his three celebrated laws: and later, when Newton showed that these laws were necessary consequences of the one law of gravitation, and when succeeding observers and mathematicians proved that each fresh irregularity in the motions of the planets was explicable by a more thorough and minute application of the same laws, this branch of astronomy reached its highest point of efficiency and left very little more to be desired.

Then, as the telescope became successively improved, the centre of interest was shifted to the surfaces of the planets and their satellites, which were watched and scrutinised with the greatest assiduity in order if possible to attain some amount of knowledge of their physical constitution and past history. A similar minute scrutiny was given to the stars and nebulæ, their distribution and grouping, and the whole heavens were mapped out, and elaborate catalogues constructed by enthusiastic astronomers in every part of the world. Others devoted themselves to the immensely difficult problem of determining the distances of the stars, and by the middle of the century a few such distances had been satisfactorily measured.

Thus, up to the middle of the nineteenth century it appeared likely that the future of astronomy would rest almost entirely on the improvement of the telescope, and of the various instruments of measurement by means of which more accurate determinations of distances might be obtained. Indeed, the author of the Positive Philosophy, Auguste Comte, felt so sure of this that he deprecated all further attention to the stars as pure waste of time that could never lead to any useful or interesting result. In his Philosophical Treatise on Popular Astronomy published in 1844, he wrote very strongly on this point. He there tells us that, as the stars are only accessible to us by sight they must always remain very imperfectly known. We can know little more than their mere existence. Even as regards so simple a phenomenon as their temperature this must always be inappreciable to a purely visual examination. Our knowledge of the stars is for the most part purely negative, that is, we can determine only that they do not belong to our system. Outside that system there exists, in astronomy, only obscurity and confusion, for want of indispensable facts; and he concludes thus:—'It is, then, in vain that for half a century it has been endeavoured to distinguish two astronomies, the one solar the other sidereal. In the eyes of those for whom science consists of real laws and not of incoherent facts, the second exists only in name, and the first alone constitutes a true astronomy; and I am not afraid to assert that it will always be so.' And he adds that—'all efforts directed to this subject for half a century have only produced an accumulation of incoherent empirical facts which can only interest an irrational curiosity.'

Seldom has a confident assertion of finality in science received so crushing a reply as was given to the above statements of Comte by the discovery in 1860 (only three years after his death) of the method of spectrum-analysis which, in its application to the stars, has revolutionised astronomy, and has enabled us to obtain that very kind of knowledge which he declared must be for ever beyond our reach. Through it we have acquired accurate information as to the physics and chemistry of the stars and nebulæ, so that we now know really more of the nature, constitution, and temperature of the enormously distant suns which we distinguish by the general term stars, than we do of most of the planets of our own system. It has also enabled us to ascertain the existence of numerous invisible stars, and to determine their orbits, their rate of motion, and even, approximately, their mass. The despised stellar astronomy of the early part of the century has now taken rank as the most profoundly interesting department of that grand science, and the branch which offers the greatest promise of future discoveries. As the results obtained by means of this powerful instrument will often be referred to, a short account of its nature and of the principles on which it depends must here be given.

The solar spectrum is the band of coloured light seen in the rainbow and, partially, in the dew-drop, but more completely when a ray of sunlight passes through a prism—a piece of glass having a triangular

الصفحات