أنت هنا
قراءة كتاب Letters on Astronomy in which the Elements of the Science are Familiarly Explained in Connection with Biographical Sketches of the Most Eminent Astronomers
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
Letters on Astronomy in which the Elements of the Science are Familiarly Explained in Connection with Biographical Sketches of the Most Eminent Astronomers
south of the equator, then its longitude is the arc of the equator intercepted between the meridian which passes through the place and the meridian of Greenwich.
The ecliptic is a great circle, in which the earth performs its annual revolutions around the sun. It passes through the centre of the earth and the centre of the sun. It is found, by observation, that the earth does not lie with its axis at right angles to the plane of the ecliptic, so as to make the equator coincide with it, but that it is turned about twenty-three and a half degrees out of a perpendicular direction, making an angle with the plane itself of sixty-six and a half degrees. The equator, therefore, must be turned the same distance out of a coincidence with the ecliptic, the two circles making an angle with each other of twenty-three and a half degrees. It is particularly important that we should form correct ideas of the ecliptic, and of its relations to the equator, since to these two circles a great number of astronomical measurements and phenomena are referred.
The equinoctial points, or equinoxes, are the intersections of the ecliptic and equator. The time when the sun crosses the equator, in going northward, is called the vernal, and in returning southward, the autumnal, equinox. The vernal equinox occurs about the twenty-first of March, and the autumnal, about the twenty-second of September.
The solstitial points are the two points of the ecliptic most distant from the equator. The times when the sun comes to them are called solstices. The Summer solstice occurs about the twenty-second of June, and the Winter solstice about the twenty-second of December. The ecliptic is divided into twelve equal parts, of thirty degrees each, called signs, which, beginning at the vernal equinox, succeed each other, in the following order:
1. Aries, ♈ | 7. Libra, ♎ |
2. Taurus, ♉ | 8. Scorpio, ♏ |
3. Gemini, ♊ | 9. Sagittarius, ♐ |
4. Cancer, ♋ | 10. Capricornus, ♑ |
5. Leo, ♌ | 11. Aquarius, ♒ |
6. Virgo, ♍ | 12. Pisces. ♓ |
The mode of reckoning on the ecliptic is by signs, degrees, minutes, and seconds. The sign is denoted either by its name or its number. Thus, one hundred degrees may be expressed either as the tenth degree of Cancer, or as 3s 10°. It will be found an advantage to repeat the signs in their proper order, until they are well fixed in the memory, and to be able to recognise each sign by its appropriate character.
Of the various meridians, two are distinguished by the name of colures. The equinoctial colure is the meridian which passes through the equinoctial points. From this meridian, right ascension and celestial longitude are reckoned, as longitude on the earth is reckoned from the meridian of Greenwich. The solstitial colure is the meridian which passes through the solstitial points.
The position of a celestial body is referred to the equator by its right ascension and declination. Right ascension is the angular distance from the vernal equinox measured on the equator. If a star is situated on the equator, then its right ascension is the number of degrees of the equator between the star and the vernal equinox. But if the star is north or south of the equator, then its right ascension is the number of degrees of the equator, intercepted between the vernal equinox and that secondary to the equator which passes through the star. Declination is the distance of a body from the equator measured on a secondary to the latter. Therefore, right ascension and declination correspond to terrestrial longitude and latitude,—right ascension being reckoned from the equinoctial colure, in the same manner as longitude is reckoned from the meridian of Greenwich. On the other hand, celestial longitude and latitude are referred, not to the equator, but to the ecliptic. Celestial longitude is the distance of a body from the vernal equinox measured on the ecliptic. Celestial latitude is the distance from the ecliptic measured on a secondary to the latter. Or, more briefly, longitude is distance on the ecliptic: latitude, distance from the ecliptic. The north polar distance of a star is the complement of its declination.
Parallels of latitude are small circles parallel to the equator. They constantly diminish in size, as we go from the equator to the pole. The tropics are the parallels of latitude which pass through the solstices. The northern tropic is called the tropic of Cancer; the southern, the tropic of Capricorn. The polar circles are the parallels of latitude that pass through the poles of the ecliptic, at the distance of twenty-three and a half degrees from the poles of the earth.
The elevation of the pole of the heavens above the horizon of any place is always equal to the latitude of the place. Thus, in forty degrees of north latitude we see the north star forty degrees above the northern horizon; whereas, if we should travel southward, its elevation would grow less and less, until we reached the equator, where it would appear in the horizon. Or, if we should travel northwards, the north star would rise continually higher and higher, until, if we could reach the pole of the earth, that star would appear directly over head. The elevation of the equator above the horizon of any place is equal to the complement of the latitude. Thus, at the latitude of forty degrees north, the equator is elevated fifty degrees above the southern horizon.
The earth is divided into five zones. That portion of the earth which lies between the tropics is called the torrid zone; that between the tropics and the polar circles, the temperate zones; and that between the polar circles and the poles, the frigid zones.
The zodiac is the part of the celestial sphere which lies about eight degrees on each side of the ecliptic. This portion of the heavens is thus marked off by itself, because all the planets move within it.
After endeavoring to form, from the definitions, as clear an idea as we can of the various circles of the sphere, we may next resort to an artificial globe, and see how they are severally represented there. I do not advise to begin learning the definitions from the globe; the mind is more improved, and a power of conceiving clearly how things are in Nature is more effectually acquired, by referring every thing, at first, to the grand sphere of Nature itself, and afterwards resorting to artificial representations to aid our conceptions. We can get but a very imperfect idea of a man from a profile cut in paper, unless we know the original. If we are acquainted with the individual, the profile will assist us to recall his appearance more distinctly than we can do without it. In like manner, orreries, globes, and other artificial aids, will be found very useful, in assisting us to form distinct conceptions of the relations existing between the different circles of the sphere, and of the arrangements of the heavenly bodies; but, unless we have already acquired some correct ideas of these things, by contemplating them as they are in Nature, artificial globes, and especially orreries, will be apt to mislead us.