قراءة كتاب Encyclopaedia Britannica, 11th Edition, "Mars" to "Matteawan" Volume 17, Slice 7

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Encyclopaedia Britannica, 11th Edition, "Mars" to "Matteawan"
Volume 17, Slice 7

Encyclopaedia Britannica, 11th Edition, "Mars" to "Matteawan" Volume 17, Slice 7

تقييمك:
0
لا توجد اصوات
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 9

produced annually by the melting of the polar snows to every part of the planet. The actual canals are too minute to be visible to us. What we really see as dark lines are broad strips of vegetation, produced by artificial cultivation extending along each border of the irrigating streams. On the other hand, in the view of his critics, the quantity of ice or snow which the sun’s rays could melt around the poles of Mars, the rate of flow and evaporation as the water is carried toward the equator, and several other of the conditions involved, require investigation before the theory can be established.11

The accompanying illustrations of Mars and its canals are those of Lowell, and represent the planet as seen by the Flagstaff observers.

Fig. 2.

Satellites and Pole of Mars.—At the opposition of Mars which occurred in August 1877 the planet was unusually near the earth. Asaph Hall, then in charge of the 26″ telescope at the Naval Observatory in Washington, took advantage of this favourable circumstance to make a careful search for a visible satellite of the planet. On the night of the 11th of August he found a faint object near the planet. Cloudy weather intervened, and the object was not again seen until the 16th, when it was found to be moving with the planet, leaving no doubt as to its being a satellite. On the night following an inner satellite much nearer the planet was observed. This discovery, apart from its intrinsic interest, is also noteworthy as the first of a series of discoveries of satellites of the outer planets. The satellites of Mars are difficult to observe, on account not merely of their faintness, but of their proximity to the planet, the light of which is so bright as to nearly blot out that of the satellite. Intrinsically the inner satellite is brighter than the outer one, but for the reason just mentioned it is more difficult to observe. The names given them by Hall were Deimos for the outer satellite and Phobos for the inner one, derived from the mythological horses that drew the chariot of the god Mars. A remarkable feature of the orbit of Phobos is that it is so near the planet as to perform a revolution in less than one-third that of the diurnal rotation of Mars. The result is that to an inhabitant of Mars this satellite would rise in the west and set in the east, making two apparent diurnal revolutions every day. The period of Deimos is only six days greater than that of a Martian day; consequently its apparent motion around the planet would be so slow that more than two days elapse between rising and setting, and again between setting and rising.

Fig. 3.

Owing to the minuteness of these bodies it is impossible to make any measures of their diameters. These can be inferred only from their brightness. Assuming them to be of the same colour as Mars, Lowell estimates them to be about ten miles for Deimos and somewhat more for Phobos. But these estimates are uncertain, not only from the somewhat hypothetical character of the data on which they rest, but from the difficulty of accurately estimating the brightness of such an object in the glare of the planet.

A long and careful series of observations was made upon these bodies by other observers. Later, especially at the very favourable oppositions of 1892 and 1894, observations were made by Hermann Struve at Poulkova, who subjected all the observations up to 1898 to a very careful discussion. He showed that the inclination of the planes of the orbits to the equator of the planet is quite small, thus making it certain that these two planes can never wander far from each other. In the following statement of the numerical elements of the entire system, Struve’s results are given for the satellites, while those of Lowell are adopted for the position of the plane of the equator.

The relations of the several planes can be best conceived by considering the points at which lines perpendicular to them, or their poles, meet the celestial sphere. By theory, the pole of the orbital plane of each satellite revolves round the pole of a certain fixed plane, differing less from the plane of the equator of Mars the nearer the satellite is to Mars. Lowell from a combination of his own observations with those of Schiaparelli, Lohse and Cerulli, found for the pole of the axis of rotation of Mars12:—

R.A. = 317.5°;    Dec. = +54.5°; Epoch, 1905.

Tilt13 of Martian Equator to Martian ecliptic, 23°. 59′. Hermann Struve, from the observations of the satellites, found theoretically the following positions of this pole, and of those of the fixed planes of the satellite orbits for 1900:—

Pole of Mars: R.A. = 317.25° Dec. = 52.63°
Pole of fixed plane for Phobos = 317.24° = 52.64°
Pole of fixed plane for Deimos = 316.20° = 53.37°

Lowell’s position of the pole is that now adopted by the British Nautical Almanac.

The actual positions of the poles of the satellite—orbits revolve around these poles of the two fixed planes in circles. Putting N for the right-ascensions of their nodes on the plane of the terrestrial equator, and J for their angular distance from the north terrestrial pole, N, and J, for the corresponding poles of the fixed planes, and t for the time in years after 1900, Struve’s results are:—

الصفحات