أنت هنا
قراءة كتاب The A B C of Mining A Handbook for Prospectors
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
asbestos often decompose into a white powder found in the crevices of the rocks; fibrous asbestos existing in the interior.
Petroleum shows in an iridescent film upon still pools, and the odor is a sure guide to its nature.
A "dipping-needle" is valuable to the prospector on the lookout for iron ore; by its use he may discover masses of magnetic ore and trace their extent. As he carries the compass over the ground the needle dips toward any iron mass he approaches; directly over the ore it becomes vertical.

MINER'S DIPPING NEEDLE.
In a wilderness country strength of body and endurance are important qualifications. The prospector must, moreover, have such general knowledge of geology and mineralogy as to be able to recognize all valuable minerals and confirm his conjecture by simple tests. Pick, shovel and pan must be handled skillfully, while the rifle, shotgun and paddle must also be understood. For in the unsettled parts of the country the traveler must even yet rely to some extent upon the fish and game he may be able to secure, and every old prospector becomes a trained hunter and camper. Knowing how to bake bread is sometimes more valuable than much mathematics; ability to build a rough boat is often the one hope of salvation.
In sinking a short shaft in a sunny country a large mirror, inclined at a suitable angle over the shaft, will give sufficient light.
Lodes or veins following the general trend of the auriferous quartz are much more likely to be rich than are those that cross it. Gold is never distributed evenly in veins, though it may be in great beds of low grade material; but more often rich areas alternate with barren portions.
Where quartz veins are small and the rich pockets separated by wide intervals of poor gangue the gravel of the district will usually be similar in character. As this condition obtains in the upper Yukon district as far as the gravels are concerned, it will probably be found to hold good for the quartz leads, when they shall have been discovered.
The more nearly the gold formation approaches to the crystalline schists, the poorer will the quality of the gold be through the larger percentage of silver found in it. In slates the proportion may be 22 gold to 1 silver; in schists it has been known to be a ratio of 1 to 1.
With the discovery of valuable gold-bearing gravel on the bare hillsides of the Northwest, a vast region has been added to the area the prospector may explore to advantage. No experience acquired in ordinary American placer grounds is likely to be of much use in detecting these higher gold-bearing gravels of the Yukon, but they appear to be somewhat similar in character to the New Zealand terraces. Terrace-prospecting requires perseverance and the use of some brains, as it is infinitely harder than creek-prospecting. These terraces or benches are the remains of old river beds. The whole bench must be carefully scanned over because the gold is quite as likely to be in one part as in the other. Sometimes it is in half a dozen different layers one above the other. Sometimes the old river terraces are entirely covered by landslides, and the majority of such deposits are not likely ever to be found, as it is almost impossible to guess at locations.
In New Zealand gold has been found on table-lands nearly 6,000 feet above sea level, and according to recent information valuable claims have been discovered in Alaska on the very summits of the rounded hills on each side of El Dorado creek.
To understand how such deposits as those of the Northwest may have been made, suppose that such a vein as that of the Idaho, which has been worked for a depth 1,700 feet by a width of 1,000 feet, and from which $17,000,000 have been taken, to have been worn down by glacial or other forces. Is it not conceivable that the gold would gradually have accumulated in the nearest canyon?

DOLLY.
To obtain suitable samples of the vein a dolly is an efficient apparatus.
This is practically a very simple, crude, stamp mill. On the end of a solid log, firmly fixed in the ground and standing four feet or so above the surface, a square 6-inch hole is cut in which are fitted wrought iron bars 3 inches deep by ½ inch wide, and separated by equal intervals. These bars taper below so as to permit free passage of the pounded mineral. A wooden box surrounding the grating keeps the ore in place. A block of wood, shod with iron, forms the stamper. The miner hauls on the handles at every blow. The gold is saved on the lower table.
No one of experience in mining would look for brown hematite in a granite range, nor for black band, though such might be a likely region for red hematite or magnatite.
The explorer should be familiar in theory at least with the locality where he may expect to find valuable minerals. For instance, should he be searching for some heavy, detached substance that is usually found in placer deposits he will keep to the low ground and examine carefully the beds of the streams. On the other hand, should his quest be for some ore that is more properly a component of a lode or vein he will examine the side hills and summits where denudation will certainly have exposed such deposits. Then he must know the appearance of each ore, and with the methods of making rough and ready tests he must be perfectly familiar.
Gold is always more or less intimately associated with quartz. Oxide of tin is said never to have been found more than two miles from some granite rock, one of the components of which was muscovite or white mica. The junction of slates and schists with igneous or metamorphic rocks often proves a valuable find of mineral.
Rocks for the purposes of the explorer may be grouped under three heads: Igneous; metamorphic; stratified. The first includes lavas; trachytes, grayish with rough fracture and mainly glassy; dark basalts: and traps, such as greenstone. Obsidian is a volcanic glass. Metamorphic rocks are thought to have once been stratified, but to have been altered by heat. They comprise granite, of quartz feldspar and mica; syenite, containing hornblende instead of mica; gneiss, like granite, but showing lines of stratification; mica schist, made up of mica and quartz and separating easily into layers; slates.
Stratified rocks are those deposits from water, such as sandstone, limestone, clay, etc.
A prospecting shaft need not be of large dimensions. One 4 feet square is amply large for any depth down to 30 feet, but it must be kept plumb.
Sometimes shafts are sunk through the pay streak in alluvial gravel, without it being detected. Frequent panning will guard against this mistake.
In the Klondike region it is said early prospectors missed very rich deposits, that have since been discovered, by stopping short of true bed rock, being misled by a bed of harder gravel that they thought was bottom.
Silver almost invariably carries some gold. The dark ironstone hat already referred to is a good indication of silver ore beneath; it is generally composed of conglomerates cemented by oxides of iron and manganese.
Galena, which is sometimes so rich in silver as to be worth working for that metal, may often be followed by surface indications; namely, a white limy track with detached fragments of float ore in the surface soil. The blowpipe or fire assay quickly determines silver ore.
Tin in lode, stream, or alluvial deposits occurs only as an oxide, but its appearance is varied. It may be almost any color and shape. It is always near granite, containing white mica known as muscovite.
The minerals for which it is most easily mistaken are: