قراءة كتاب Records of Steam Boiler Explosions
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
are the condition of the boiler and all belonging to it immediately before the explosion, together with the locality of the first rent, the direction of the line of rupture, and the nature of the fracture; as everything occurring after the instant of the first rent is an effect and not a cause of explosion. As soon as the first rent has taken place, the balance of strain in the fabric is disturbed, and therefore the internal pressure has greatly increased power in continuing the rupture; and also the pressure being then removed from the surface of the water, which is already heated to the temperature of the steam, the whole body of the water gives out its heat in the form of steam at a considerable pressure, and thus supplies the volume of steam for carrying on the work of destruction. When thus quickly generated, the steam perhaps carries part of the water with it in the same way that it does in ordinary priming; and it has been thought by some that the impact of the water is thus added to that of the steam, to aid in the shock given to all surrounding obstacles.
It is seldom that one out of a bed of boilers explodes without more or less injury to the others on either side of it; but sometimes two boilers in one bed, or three, or even five, have exploded simultaneously.
The causes of boiler explosions may be considered under the two general heads of—
Firstly, faults in the fabric of the boiler itself as originally constructed, such as bad shape, want of stays, bad material, defective workmanship, or injudicious setting:—and
Secondly, mischief arising during working, either from wear and tear, or from overheating through shortness of water or accumulation of scurf; or from corrosion, in its several forms of general thinning, pitting, furrowing, or channelling of the plates; or from flaws or fractures in the material, or injury by the effect of repeated strain; or from undue pressure through want of adequate arrangements for escape of surplus steam.
There is no doubt that many of the early explosions were from faults of construction. The stronger materials now used were then found so difficult to manipulate that others easier to work were chosen, and often the shape of the boiler was only selected as the one easiest to make. The early boilers were made of copper or cast iron, with leaden or even wooden tops, and of the weakest possible shape. Such was the boiler used by Savery, shown in Fig. 3, and the Tun Boiler and Flange boiler, Fig. 4 and Fig. 5. The very fatal explosion in London in 1815, referred to by the parliamentary commission previously named, was of a cast-iron boiler, which failed because one side was too thin to bear the pressure, as the casting was of irregular thickness. The steam being at that time used only at or below atmospheric pressure as a means of obtaining a vacuum by condensation for working by the external pressure of the atmosphere, so little was pressure of the steam thought of, that boilers were proposed and it is believed were actually constructed with hooped wooden shells, like barrels, and internal fireplaces and flues of copper; and even a stone chamber was named as being a suitable shell for a boiler, with internal fireplace and copper flue passing three times the length of the inside and out at the top, like an ordinary stove and piping. These boilers must have been something like the sketches given in Fig. 6 and Fig. 7, and were intended to be exposed only to the external pressure of the atmosphere.
Cast iron was frequently used for the shell of boilers, with an internal fireplace and tubes of wrought iron, as shown in Fig. 8., and boilers of this construction are still to be found in use at some of the older works at the present day. As the outside shell and front plate are 1½ inch thick and are not exposed to any wear at all, these boilers are sufficiently strong. A duplicate front plate with set of tubes attached is always kept on hand in case of need. Another form of cast-iron boiler is shown in Fig. 9., made in several parts put together with flange joints, with an internal fireplace and flue also made of cast iron. When cast iron was used for the parts exposed to the fire in boilers intended for high pressure, it was sometimes employed in the form of tubes of small diameter and proportionately thinner; as in Woolf's boiler, so much spoken of in the evidence before the parliamentary committee of 1817. This boiler, shown in Fig. 10., consisted of nine cast-iron pipes, about 1 foot diameter and 9 feet long, set in brickwork so that the flame played all round them. These small tubes were connected with another of larger size placed transversely above them, forming a steam receiver, and this again with a still larger one, which formed a steam chamber. No details of any explosions of the three last mentioned boilers have been obtained; but it is known that the cast iron was found a most treacherous material,