قراءة كتاب Scientific Romances (First Series)

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific Romances (First Series)

Scientific Romances (First Series)

تقييمك:
0
لا توجد اصوات
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 3

it is only after a number of steps have been gone through, that any consistent familiarity with its properties is obtained. Of all applications of the reason, this exploration is perhaps the one which requires, for the simplicity of the data involved, the greatest exercise of the abstract imagination, and on this account is well worth patient attention. The first steps are very simple. We must imagine a finite straight line to generate a square by moving on the plane of the paper, and this square in its turn to generate a cube by moving vertically upwards. Fig. 1 represents a straight line; Fig. 2 represents a square formed by the motion of that straight line; Fig. 3 represents perspectively a cube formed by the motion of that square A B C D upwards. It would be well, instead of using figure 3, to place a cube on the paper. Its base would be A B C D, its upper surface E F G H.

Generating a line, square, and cube.

The straight line A B gives rise to the square A B C D by a movement at right angles to itself. If motion be confined to the straight line A B, a backward and forward motion is the only one possible. No sideway motion is admissible. And if we suppose a being to exist which could only move in the straight line A B, it would have no idea of any other movement than to and fro. The square A B C D is formed from the straight line by a movement in a direction entirely different from the direction which exists in A B. This motion is not expressible by means of any possible motion in A B. A being which existed in A B, and whose experience was limited to what could occur in A B, would not be able to understand the instructions we should give to make A B trace out the figure A B C D.

In the figure A B C D there is a possibility of moving in a variety of directions, so long as all these directions are confined to one plane. All directions in this plane can be considered as compounded of two, from A to B, and from A to C. Out of the infinite variety of such directions there is none which tends in a direction perpendicular to Fig. 2; there is none which tends upwards from the plane of the paper. Conceive a being to exist in the plane, and to move only in it. In all the movements which he went through there would be none by which he could conceive the alteration of Fig. 2 into what Fig. 3 represents in perspective. For 2 to become 3 it must be supposed to move perpendicularly to its own plane. The figure it traces out is the cube A B C D E F G H.

All the directions, manifold as they are, in which a creature existing in Fig. 3 could move, are compounded of three directions. From A to B, from A to C, from A to E, and there are no other directions known to it.

But if we suppose something similar to be done to Fig. 3, something of the same kind as was done to Fig. 1 to turn it into Fig. 2, or to Fig. 2 to turn it into Fig. 3, we must suppose the whole figure as it exists to be moved in some direction entirely different from any direction within it, and not made up of any combination of the directions in it. What is this? It is the fourth direction.

We are as unable to imagine it as a creature living in the plane Fig. 2 would be to imagine a direction such that moving in it the square 2 would become the cube 3. The third dimension to such a creature would be as unintelligible as the fourth is to us. And at this point we have to give up the aid that is to be got from any presentable object, and we have simply to investigate what the properties of the simplest figure in four dimensions are, by pursuing further the analogy which we know to exist between the process of formation of 2 from 1, and of 3 from 2, and finally of 4 from 3. For the sake of convenience, let us call the figure we are investigating—the simplest figure in four dimensions—a four-square.

First of all we must notice, that if a cube be formed from a square by the movement of the square in a new direction, each point of the interior of the square traces out part of the cube. It is not only the bounding lines that by their motion form the cube, but each portion of the interior of the square generates a portion of the cube. So if a cube were to move in the fourth dimension so as to generate a four-square, every point in the interior of the cube would start de novo, and trace out a portion of the new figure uninterfered with by the other points.

Or, to look at the matter in another light, a being in three dimensions, looking down on a square, sees each part of it extended before him, and can touch each part without having to pass through the surrounding parts, for he can go from above, while the surrounding parts surround the part he touches only in one plane.

So a being in four dimensions could look at and touch every point of a solid figure. No one part would hide another, for he would look at each part from a direction which is perfectly different from any in which it is possible to pass from one part of the body to another. To pass from one part of the body to another it is necessary to move in three directions, but a creature in four dimensions would look at the solid from a direction which is none of these three.

Let us obtain a few facts about the fourth figure, proceeding according to the analogy that exists between 1, 2, 3, and 4. In the Fig. 1 there are two points. In 2 there are four points—the four corners of the square. In 3 there are eight points. In the next figure, proceeding according to the same law, there would be sixteen points.

In the Fig. 1 there is one line. In the square there are four lines. In the cube there are twelve lines. How many lines would there be in the four-square? That is to say that there are three numbers—1, 4, and 12. What is the fourth, going on accordingly to the same law?

To answer this question let us trace out in more detail how the figures change into one another. The line, to become the square, moves; it occupies first of all its original position, and last of all its final position. It starts as A B, and ends as C D; thus the line appears twice, or it is doubled. The two other lines in the square, A C, B D, are formed by the motions of the points at the extremities of the moving line. Thus, in passing from the straight line to the square the lines double themselves, and each point traces out a line. If the same procedure holds good in the case of the change of the square into the cube, we ought in the cube to have double the number of lines as in the square—that is eight—and every point in the square ought to become a line. As there are four points in the square, we should have four lines in the cube from them, that is, adding to the previous eight, there should be twelve lines in the cube. This is obviously the case. Hence we may with confidence, to deduce the number of lines in a four-square, apply this rule. Double the number of lines in the previous figure, and add as many lines as there are points in the previous figure. Now in the cube there are twelve lines and eight points. Hence we get 2 × 12 + 8, or thirty-two lines in the four-square.

In the same way any other question about the four-square can be answered. We must throw aside our realising power and answer in accordance with the analogy to be worked out from the three figures we know.

Thus, if we want to know how many plane surfaces the four-square has, we must commence with the line, which has none; the square has one; the cube has six. Here we get the three numbers, 0, 1, and 6. What is the fourth?

Consider how the planes of the cube arise. The square at the beginning of its motion determines one of the faces of the

الصفحات