أنت هنا
قراءة كتاب Radioisotopes and Life Processes (Revised)
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
the cell occur in a great variety of types: alcohols, fats, steroids, phospholipids, and aldehydes. They are found in all fractions of the cell. Their most important functions seem to be to form membranes and to give these membranes specific permeability. They are also important as stores of chemical energy, mostly in the form of neutral fats.
The proteins occur in many cell structures and are of many kinds: Enzymes, the catalysts for the cell’s metabolic processes, are proteins, for instance. The nucleic acids are DNA and RNA (ribonucleic acid), which function together to manufacture the cell’s proteins. Since a large share of the remaining pages will be devoted to a discussion of proteins and nucleic acids, at this point we need only emphasize that these two types of materials are interrelated in their function and that both are essential.
The Two Nucleic Acids
It is not very fruitful to discuss whether proteins or nucleic acids are more important. That question is something like the one about the chicken and the egg. We cannot think of one without thinking of the other. Although our insight into the mutual dependence of these two materials has greatly increased in recent years and although we know the relation between them is a fundamental factor in such events as reproduction, mutation, and differentiation (or specialization) of cells, our understanding of their interplay is far from complete. Real understanding of the relation between them would give us insight into the essence of growth—both normal and abnormal—or, indeed, one could almost say, into the complexity of life itself.
Practically all the DNA of most cells is concentrated in the nucleus. RNA, on the other hand, is distributed throughout the cell. Some RNA is present in the nucleus, but most of it is associated with minute particles in the cytoplasm known as microsomes, some of which are especially rich in RNA and are accordingly named ribosomes. These are much smaller particles than the mitochondria.
Mitosis
One of the most remarkable characteristics of cells is their ability to grow and divide. New cells come from preexisting cells. When a cell reaches a certain stage in its life, it divides into two parts. These parts, after another period of growth, can in turn divide. In this way plants and animals grow to their normal size and injured tissues are repaired. Cell division occurs when some of the contents of the cell have been doubled by replication, or copying (to be discussed later). The division of a cell results in two roughly equal new parts, the daughter cells. The process of cell division is known as mitosis and is diagrammed in Figure 6.
Mitosis is a continuous process; the following stages of the process are designated only for convenience. During interphase the cell is busy metabolizing, synthesizing new cellular materials, and preparing for self-duplication by synthesizing new chromosomes. In prophase the chromosomes, each now composed of two identical strands called chromatids, shorten by coiling, and the nucleolus and nuclear membrane disappear. During metaphase the chromosomes line up in one plane near the cell equator. At anaphase the sister chromatids of each chromosome separate, and each part moves toward the ends, or poles, of the cell. During telophase the chromosomes uncoil and return to invisibility; a new nucleus, nucleolus, and nuclear membrane are reconstituted at each end, and division of the cell body occurs between the new nuclei, forming the two new cells. Each daughter cell thereby receives a full set of chromosomes, and, since the genes are in the chromosomes, each daughter cell has the same genetic complement.
All life processes use up energy and therefore require fuel. The mitochondria have a central role in the reactions by which the energy of sugars is supplied for cellular activity. The importance of this vital activity is obvious. In this booklet, however, we are concerned with the processes, involving nucleic acids and proteins, that can be described as making up “the gene-action system”. The gene-action system is the series of biochemical events that regulate and direct all life processes by “transcription” of the genetic “information” contained in molecules of DNA.
RADIOACTIVE ISOTOPES: THE BIOLOGICAL DETECTIVES
Man ... has found ways to amplify his senses ... and, with a variety of instruments and techniques, has added kinds of perception that were missing from his original endowment.
Glenn T. Seaborg
Atomic Structure
Practically everyone nowadays is to some extent familiar with the atomic structure of matter. Atomic energy, nuclear reactors, and radioisotopes are terms in everyday usage. However, to appreciate how radioisotopes can be applied to the study of life processes, we must have at least a working knowledge of their properties, their preparation, and their limitations. It is therefore appropriate to examine them in detail so that the succeeding chapters will be more easily understood.
According to present-day theory, an atom consists of a nucleus[4] that is made up of protons and neutrons[5] and is surrounded by electrons. In each atom there is an equal number of protons (positively charged) in the nucleus and electrons (negatively charged) moving concentrically around the nucleus; since neutrons have no electrical charge and since protons and electrons cancel each other’s charges, the whole atom is electrically neutral, or uncharged. Each atom is identified by an atomic