قراءة كتاب Scientific American Supplement, No. 799, April 25, 1891

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific American Supplement, No. 799, April 25, 1891

Scientific American Supplement, No. 799, April 25, 1891

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 3

beams across the ship.

On this was built the wooden deck. Beams for this deck were constructed of three 3 in. planks, and were laid down on the iron platform about 3½ ft. apart, and firmly wedged into the ship's side. On these beams a layer of 3 in. planks was placed in a fore-and-aft direction and nailed down; on this were three layers of felt, and on this again more planks were laid down in the same direction as before.

The whole deck was then carefully calked and the sides made watertight with Portland cement. This deck only extended to the engine room bulkhead through the two foremost holds. It was prevented from bursting up by the pressure on the bottom of it, by means of shores, in the same manner as the iron deck had been served before. Shores were, therefore, connecting the three decks—the upper deck, lower deck, and wooden deck—this being done to equalize the pressure on the extemporé deck and the two permanent decks, and thus gain additional strength.

No deck was built in either of the after compartments, inasmuch as No. 3 hold was kept clear of water as before by its pump, and in No. 4 the deck was not necessary. To have built one there, as in the two foremost ones, although it would have given a little more reserve of buoyancy to the ship, would have raised the stern higher than the bows, and so would have increased the upward pressure on the wooden deck, and thus have increased the liability to burst up. For the same reason, when raising the ship off the rocks, no compressed air was used in the after hold to lift the ship. The anchors and cables were in both cases transferred aft, for the same purpose, namely, to diminish the upward pressure forward. In the case of the wooden deck leaking, 200 of the same casks were placed between it and the lower deck in the foremost hold to retain some of the buoyancy of the forepart, which would otherwise be lost. No decks were built in the compartment before the collision bulkhead, as very little buoyancy was lost by that space being full of water, and all that was there was confined to that compartment by the bulkhead and the iron lower deck.

While all these foregoing arrangements were being made for the exclusion of water from the inside of the ship, the engineers and firemen were employed clearing the engine room of some fifty tons of coal which had been washed from the open bunkers into the machinery by the sea, when the engine room was full and the ship on the reef. The greatest difficulty was experienced in digging out and excavating the engines from the coal and dirt, and still greater was the labor of cleaning all the mechanism and putting everything once more in an efficient steaming condition. But all was finished soon after the decks had been completed, and on October 12 she was ready for sea. On the following day she was floated off and started on her perilous voyage to Halifax, using her own engines, and making about five and a half knots an hour. Her steam pumps were by this time all ready for service to assist the big ones on deck in an emergency. She anchored once on her way round, at Shelburne, on the coast of Nova Scotia, arriving at Halifax at 1 p.m. on October 17. The trip round was a very anxious time for all hands, more especially when they were overtaken by a fresh gale in the Atlantic, for the forward deck was very liable to be burst up with the increased pressure on it caused by the pitching of the ship; also the rudder was entirely unable to bear any strain on it, because the lower part of the rudder post was unconnected with the stern post, part of the stern framing which connects the two having been broken off. Any heavy sea was therefore likely to carry away the rudder altogether, or the same accident might happen if the helm was put down too hard, rendering the ship unmanageable.

She was placed in dry dock as soon as she arrived at Halifax, and it was not until then that the full extent of the damages, caused by the pounding on the rocks, could be fully realized. The first 20 feet of the keel had been torn completely out, and about 30 feet from the stern there was an immense hole, with the thick plates torn and bent like paper, the framing and stanchions being twisted into all sorts of shapes almost beyond recognition. Under the foremast the bottom of the ship was bent up in the form of an arch, having been raised 4 feet above its natural position, with an immense hole punctured on the starboard side, besides several smaller ones. Also the aftermost 20 feet of keel was torn and jagged, with several small holes in the skin, and the lower portion of the stern framing was broken off, leaving the rudder post to hang down unsupported at its extremity. It would strike one on looking at these gaping wounds that it would be nearly impossible to place the Ulunda in an efficient condition again, but the work of renewing the damaged plates is being carried out at a great rate, and in three months' time it is hoped that all the repairs necessary will be completed and the ship once more doing her duty. She has already cost her owners some $10,000, and $40,000 are estimated to cover all future repairs.

The foremast was snapped off in a somewhat novel manner. She was pivoted on the rocks by her bows, and at high tide, the day after she struck, a breeze sprang up and turned her round; the tide sinking again, the whole weight of the ship came on the bottom of the ship where she was then touching, namely, just on the spot where the foremost was stepped, and right astern, leaving the center portion of the ship unsupported. This caused the foremast to rise, and it being held down by wire rigging, it snapped in several places, at the same time tearing up the shrouds from the deck. This accounts also for the arch-like bulge in the bottom at that spot and for the damages astern; also for the fact that Captain Kelly discovered the ship with her head to sea.

Another incident happened when the ship was just rising off the rocks, which nearly resulted in a catastrophe. When the ship was just beginning to lift, the leak in No. 3 compartment was found to be gaining on its pump. A diver was at once sent down to ascertain the cause, and he found that a small hole, about 6 inches square, had been punctured in the skin, which until then had been kept tight by the rock that had caused it. It was necessary to close this leak at once. An iron bolt, which was screwed for a nut at one end, was obtained and passed through a strong piece of wood about 2 feet square. The inside of this board was cushioned with canvas and oakum, and it was taken down outside the ship by the diver and placed over the hole, with the feathered end of the bolt sticking through the hole; the diver was then sent down inside the hold, and with a nut set up the whole cushion until the flow of water was stopped. The leak was thus stopped which had threatened the arrangements for floating the ship with failure.

It has been seen that the method of raising the Ulunda was very simple. She was floated off by the rising tide. If there had been only a small instead of an 18 foot rise, some other mode would have to have been adopted. No attempt was made to stop any of the leaks, except the one just stated, but a deck above the lacerations was made water-tight, and this, together with the sides of the ship hanging down, formed a kind of diving bell, the pressure of air in which, caused by the water outside, acting on this deck, being the principal means of buoying up the ship, assisted by the buoyancy of the two water-tight compartments. The deck afterward built was only necessary for the safety of the ship, she being able to float without it; but it would have been suicidal to trust the ship on the Atlantic in the state she was in when raised, since with any swell on, the compressed air would escape and its place be taken by water, the buoyancy necessary for keeping her afloat being thus lost.

It only remains to be said that the risks run in steaming around to Halifax by herself were, as it was, very great, and had the wind and sea been less favorable, the

Pages