قراءة كتاب Scientific American Supplement, No. 799, April 25, 1891

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific American Supplement, No. 799, April 25, 1891

Scientific American Supplement, No. 799, April 25, 1891

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 5

the motor using poor gas.

The gas generator requires the use of English anthracite, while a steam boiler is heated with any kind of coal. The prices of unity of weight are therefore very different. Moreover, the gas motor necessitates an immense amount of water for the washing of the gas and the cooling of the cylinder, through circulation in the jacket. It is well to keep this fact in view. On another hand, the lubrification of the cylinders requires a profusion of oil whose flashing point must be at a very high temperature, else it would burn at every explosion and fill the cylinder with coom. Such oil is very costly.

Does not the expenditure of oil in large motors largely offset the saving in coal? And then, gas motors are sold at high prices, as are gas generators, and this installation necessarily requires the addition of a large gasometer, scrubbers, etc. The wear of these apparatus is rapid, and if we take into account the interest and amortization of the capital engaged, we shall find that the use of steam is still more economical. The obstruction caused by bulky apparatus is another inconvenience, upon which it is unnecessary to dwell. In a word, the question is a very complex one. We look at but one side of it in occupying ourselves only with the coal consumed, and we shall certainly expose those who allowed themselves to be influenced by the seductive figures of consumption to bitter disappointment.

To answer such objections Mr. Aimé Witz has established a complete parallel between the two systems, in which he looks at the question from a theoretical and practical and scientific and financial point of view. Considered as a transformation apparatus, a steam motor burning good Cardiff coal in a Galloway boiler with feed water heaters will consume (with a good condensing engine utilizing an expansion of a sixth) from 1,100 to 1,250 grammes of coal per effective horse hour, which corresponds to a rough coefficient of utilization of 9.7 per cent. A gas generator supplying a gas motor burning Swansea anthracite and Noeux coke, medium quality, will consume 516 grammes of anthracite and 90 of coke to produce 2,370 liters of gas giving 1,487 heat units per cubic meter. Of the 3,524 heat units furnished to the motor by the 2,370 liters of gas, the motor will convert 18 per cent. into disposable mechanical work.

With the boiler, the gross rendering of the whole is 7 per cent. With the gas generator it reaches 12.7 per cent. From a theoretical point of view the advantage therefore rests with the gas generator and gas motor. In order to compare the net cost of the units of work, from an industrial point of view, it is necessary to form estimates of installation, costs of keeping in repair, interest and amortization.

Figs. 1 and 2 represent, on the same scale, the installations necessary in each of these systems. The legends indicate the names of the different apparatus in each installation. The following table shows that, as regards the surface occupied, the advantage is again with the gas generator and gas motor:

                     Steam Engine.      Gas Motor.
  Surface covered.       85 sq. m.       72 sq. m.
  Surface exposed.       33    "         43    "
                        ---             ---
  Total surface.        118    "        115    "

The estimates of installation formed by Mr. Witz set forth the expense relative to the capital engaged exactly at the same figure of 32,000 francs for a motive power of 75 effective horses. The expenses of keeping in repair, interest, etc., summed up, show that the cost per day of 10 hours is 47.9 francs for the steam engine and 39.6 for the gas motor, say a saving of 8.3 francs per day, or about 2,500 francs for a year of 300 days' work.

The gas motor, therefore, effects a great saving, while at the same time occupying less space, consuming less water and operating just as well.

With Mr. Witz we cheerfully admit all the advantages that he so clearly establishes with his perfect competency in such matters, but there still remain two points upon which we wish to be enlightened. Are not the starting up, the operation and the keeping in repair of a gas generator actually more complicated and more delicate than the same elements of a steam engine? Does not the poor gas manufactured in a gas generator present, from a hygienic point of view, danger sufficiently great to proscribe the use of such apparatus in many circumstances?

Such are the points upon which we should like to be enlightened before unreservedly sharing Mr. Witz's enthusiasm, which, however, is justified, economically speaking, by the magnificent results of the experiments made by the learned engineer.—La Nature.

FIG. 3.—GAS MOTOR OF 100 INDICATED HORSE POWER.

FIG. 3.—GAS MOTOR OF 100 INDICATED HORSE POWER.


IMPROVED PNEUMATIC HAMMER.

We publish illustrations of a Thwaites suspension pneumatic power ½ cwt. hammer of a new design, for planishing pipes and plates, for which we are indebted to Engineering. As indicated in the perspective view (Fig. 1) the mechanism is supported at the center of a cross girder resting on two cast iron square pillars, box section, each bolted down to the foundations by four 1¼ in. diameter bolts. The measurements of these columns and girders are given in Figs. 2 and 3, the former an elevation of the hammer and the latter a plan, partly in section, of the cross girder, while Fig. 4 is a cross section showing the arrangements for operating the hammer. In the center is a cast iron guide for working the ram, the guide being extended on two sides to receive the disk crank journals, 2 in. in diameter by 3½ in. long. The disk cranks are connected to a hollow steel ram by a connecting rod. The ram is divided inside into two compartments, each having a phosphor bronze air piston. These are connected together by a steel piston rod, the top air piston forming a connection for the small end of the connecting rod. The outside diameter of the ram is 3¾ in., and the diameter of the air pistons 2¾ in. and 2-7/8 in. respectively. Cottered into the bottom of the ram is a steel pallet holder with a dovetail, so that the pallet can be renewed or exchanged for one of another shape when required. Keyed on to the crankshaft is a flanged pulley 10 in. in diameter by 3¼ in. between flanges. There is also an overhead countershaft with strap shifting arrangement. At the side of one of the columns a hand lever and quadrant are provided, as shown in the perspective view and in Fig. 2, for working an arrangement for tightening the belt when the machine is working. To this arrangement is connected a powerful brake which stops the machine in a few revolutions. It will be seen that the brake is applied as the belt is slackened for stopping the machine. For planishing pipes or tubes a long wrought iron mandrel is provided mounted on two cast iron carriages, each having four flanged wheels for running on rails. The hammer is arranged so that tubes 4 feet in diameter can be worked for planishing plates. A pallet is fastened on the top of one of the mandrel carriages, Figs. 5 to 8 showing the details of the carriages. The general dimensions are: Distance between pillars, 6 feet; height under girder, 5 feet; height from ground to top of mandrel, 4 feet 1¾ in.; and length of stroke, 5 in. This machine is capable of delivering 500 blows per minute. The constructors are Messrs. Thwaites Brothers, Limited, Bradford, Yorkshire.

FIG. 1.

Pages