You are here
قراءة كتاب The Story of a Piece of Coal: What It Is, Whence It Comes, and Whither It Goes
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
The Story of a Piece of Coal: What It Is, Whence It Comes, and Whither It Goes
mentioned owe their origin to their deposition as sediment in seas, estuaries or lakes, but the masses of limestone which are found in the various geological formations owe their origin to causes other than that of sedimentary deposition.
In carboniferous times there lived numberless creatures which we know nowadays as encrinites. These, when growing, were fixed to the bed of the ocean, and extended upward in the shape of pliant stems composed of limestone joints or plates; the stem of each encrinite then expanded at the top in the shape of a gorgeous and graceful starfish, possessed of numberless and lengthy arms. These encrinites grew in such profusion that after death, when the plates of which their stems consisted, became loosened and scattered over the bed of the sea, they accumulated and formed solid beds of limestone. Besides the encrinites, there were of course other creatures which were able to create the hard parts of their structures by withdrawing lime from the sea, such as foraminifera, shell-fish, and especially corals, so that all these assisted after death in the accumulation of beds of limestone where they had grown and lived.
[Illustration: FIG. 20.—Encrinite.]
[Illustration: FIG. 21.—Encrinital limestone.]
There is one peculiarity in connection with the habitats of the encrinites and corals which goes some distance in supplying us with a useful clue as to the conditions under which this portion of the carboniferous formation was formed. These creatures find it a difficult matter, as a rule, to live and secrete their calcareous skeleton in any water but that which is clear, and free from muddy or sandy sediment. They are therefore not found, generally speaking, where the other deposits which we have considered, are forming, and, as these are always found near the coasts, it follows that the habitats of the creatures referred to must be far out at sea where no muddy sediments, borne by rivers, can reach them. We can therefore safely come to the conclusion that the large masses of encrinital limestone, which attain such an enormous thickness in some places, especially in Ireland, have been formed far away from the land of the period; we can at the same time draw the conclusion that if we find the encrinites broken and snapped asunder, and the limestone deposits becoming impure through being mingled with a proportion of clayey or sandy deposits, that we are approaching a coast-line where perhaps a river opened out, and where it destroyed the growth of encrinites, mixing with their dead remains the sedimentary dêbris of the land.
[Illustration: FIG. 22.—Encrinites: various. Mountain limestone.]
We have lightly glanced at the circumstances attending the deposition of each of the principal rocks which form the beds amongst which coal is found, and have now to deal with the formation of the coal itself. We have already considered the various kinds of plants and trees which have been discovered as contributing their remains to the formation of coal, and have now to attempt an explanation of how it came to be formed in so regular a manner over so wide an area.
Each of the British coal-fields is fairly extensive. The Yorkshire and Derbyshire coal-fields, together with the Lancashire coal-field, with which they were at one time in geological connection, give us an area of nearly 1000 square miles, and other British coal-fields show at least some hundreds of square miles. And yet, spread over them, we find a series of beds of coal which in many cases extend throughout the whole area with apparent regularity. If we take it, as there seems every reason to believe was the case, that almost all these coal-fields were not only being formed at the same time, but were in most instances in continuation with one another, this regularity of deposition of comparatively narrow beds of coal, appears all the more remarkable.
The question at once suggests itself, Which of two things is probable? Are we to believe that all this vegetable matter was brought down by some mighty river and deposited in its delta, or that the coal-plants grew just where we now find the coal?
Formerly it was supposed that coal was formed out of dead leaves and trees, the refuse of the vegetation of the land, which had been carried down by rivers into the sea and deposited at their mouths, in the same way that sand and mud, as we have seen, are swept down and deposited. If this were so, the extent of the deposits would require a river with an enormous embouchure, and we should be scarcely warranted in believing that such peaceful conditions would there prevail as to allow of the layers of coal to be laid down with so little disturbance and with such regularity over these wide areas. But the great objection to this theory is, that not only do the remains still retain their perfection of structure, but they are comparatively pure,—i.e., unmixed with sedimentary depositions of clay or sand. Now, rivers would not bring down the dead vegetation alone; their usual burden of sediment would also be deposited at their mouths, and thus dead plants, sand, and clay would be mixed up together in one black shaly or sandy mass, a mixture which would be useless for purposes of combustion. The only theory which explained all the recognised phenomena of the coal-measures was that the plants forming the coal actually grew where the coal was formed, and where, indeed, we now find it. When the plants and trees died, their remains fell to the ground of the forest, and these soon turned to a black, pasty, vegetable mass, the layer thus formed being regularly increased year by year by the continual accumulation of fresh carbonaceous matter. By this means a bed would be formed with regularity over a wide area; the coal would be almost free from an admixture of sandy or clayey sediment, and probably the rate of formation would be no more rapid in one part of the forest than another. Thus there would be everywhere uniformity of thickness. The warm and humid atmosphere, which it is probable then existed, would not only have tended towards the production of an abnormal vegetation, but would have assisted in the decaying and disintegrating processes which went on amongst the shed leaves and trees.
When at last it was announced as a patent fact that every bed of coal possessed its underclay, and that trees had been discovered actually standing upon their own roots in the clay, there was no room at all for doubt that the correct theory had been hit upon—viz., that coal is now found just where the trees composing it had grown in the past.
But we have more than one coal-seam to account for. We have to explain the existence of several layers of coal which have been formed over one another on the same spot at successive periods, divided by other periods when shale and sandstones only have been formed.
A careful estimate of the Lancashire coal-field has been made by Professor Hull for the Geological Survey. Of the 7000 feet of carboniferous strata here found, spread out over an area of 217 square miles, there are on the average eighteen seams of coal.
This is only an instance of what is to be found elsewhere. Eighteen coal-seams! what does this mean? It means that, during carboniferous times, on no less than eighteen occasions, separate and distinct forests have grown on this self-same spot, and that between each of these occasions changes have taken place which have brought it beneath the waters of the ocean, where the sandstones and shales have been formed which divide the coal-seams from each other. We are met here by a wonderful demonstration of the instability of the surface of the earth, and we have to do our best to show how the changes of level have been brought about, which have allowed of this game of geological see-saw to take place between sea and land. Changes of level! Many a hard geological