You are here

قراءة كتاب The Water Supply of the El Paso and Southwestern Railway from Carrizozo to Santa Rosa, N. Mex. American Society of Civil Engineers: Transactions, No. 1170

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Water Supply of the El Paso and Southwestern Railway from Carrizozo to Santa Rosa, N. Mex.
American Society of Civil Engineers: Transactions, No. 1170

The Water Supply of the El Paso and Southwestern Railway from Carrizozo to Santa Rosa, N. Mex. American Society of Civil Engineers: Transactions, No. 1170

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 1


AMERICAN SOCIETY OF CIVIL ENGINEERS

INSTITUTED 1852

TRANSACTIONS

Paper No. 1170

THE WATER SUPPLY OF THE EL PASO AND SOUTHWESTERN RAILWAY FROM CARRIZOZO TO SANTA ROSA, N. MEX.[A]

By J.L. Campbell, M. Am. Soc. C.E.

With Discussion by Messrs G.E.P. Smith, Kenneth Allen, and J.L. Campbell.


Location.—The El Paso and Southwestern Railway traverses the arid country west of the 100th Meridian in New Mexico, Texas, and Arizona, as shown on the map, Fig. 1. The water supply herein described serves that division of this road lying between Carrizozo and Santa Rosa, a distance of 128 miles.

Rainfall.—The average annual precipitation is 9.84 in. The year 1909 was exceptionally dry, with a rainfall of less than 5 in.

Original Water Supply.—East and west of El Paso, for distances of 270 miles in each direction, the railway crosses no streams, and the supply was obtained from wells ranging from 100 to 1,100 ft. in depth. On the division served by the new supply, this well-water is of very bad quality, as shown in Table 1.

After the most thorough practicable treatment, these waters were still so bad that they caused violent foaming, low steam pressure, hard scaling, rapid destruction of boiler tubes, high coal and water consumption, extraordinary engine failures and repairs, small engine mileage, low train tonnage, excessive overtime, and a demoralized train service.

[A] Presented at the meeting of May 4th, 1910.

TABLE 1.
Station. Incrusting solids, in
grains per gallon
Non-incrusting solids,
in grains per gallon.
Carrizozo 31 7
Ancho 14 4
Gallinas 91 8
Varney 180 14
Duran 127 55
Tony 115 11
Pastura 141 6
Pintado 81 9
Santa Rosa 140 29


New Water Supply.—The writer was directed to find, if possible, a supply of good water, and his efforts proved successful. The pure water now in use has eliminated the adverse conditions before mentioned; has improved the esprit de corps of the train service; and, in a short time, the reduction in operating expenses will liquidate the first cost of the new supply.

This supply is taken from the South Fork of Bonito Creek, which flows down the eastern slope of White Mountain. The latter is 12,000 ft. high, and is 16 miles south of Carrizozo (Fig. 1). The watershed is a granite and porphyry formation, heavily timbered, and the stream is fed by snow and rain. This combination yields an excellent water, carrying on an average 6.05 grains of incrusting and 0.95 grains of non-incrusting solids per gallon. The North Fork of the creek carries 16.60 and 2.40 grains, respectively. Below the junction of these forks, the water contains 10.48 grains of incrusting and 1.57 grains of non-incrusting solids per gallon; and a branch pipe line takes water from the creek during intervals in dry years when the daily flow of the South Fork is less than the consumption.

The Water Plant.—The water is taken to and along the railway in pipe lines. The system includes 116 miles of wood pipe, 19 miles of iron pipe, one 422,000,000-gal. storage reservoir, four 2,500,000-gal. service reservoirs, two pumping plants in duplicate, and accessories of valves, stand-pipes, etc.

From a small concrete dam across the creek at an elevation of 7,728 ft., the pipe line drops down the narrow valley eastward, 5-1/2 miles, to an elevation of 6,980 ft, where it turns abruptly north, rising in 1 mile to a table-land, 7,215 ft. above sea level, across which it continues northward 5 miles to the storage reservoir, which is on the north edge of this elevated country. Hereafter, this reservoir will be called the Nogal Reservoir, from the old mining village of Nogal lying 1-1/2 miles to the north and 600 ft. below it. From this reservoir, the line drops abruptly to the Carrizozo plain, and crosses the latter northward to Coyote, at Mile 156, on the railway, at an elevation of 5,810 ft., passing, on the way, 6 miles east of Carrizozo, to which a branch pipe runs, Carrizozo being 5,430 ft. above sea level. There is a 2,500,000-gal. reservoir at Coyote, and a similar one at Carrizozo.

[Illustration: FIG 1. MAP OF LINES OF EL PASO & SOUTHWESTERN SYSTEM]

This describes the gravity section of the line which brings the water from the mountain stream to the railway. From Nogal Reservoir to the latter, the capacity of the pipe is equal to the future daily requirements; from the source of supply to the reservoir, the pipe has twice as great a capacity, thereby storing surplus water. This section is 32 miles long, with a 6-mile branch line.

The second, or pumping section, extends eastward along the railway, rising from an elevation of 5,810 ft. at Coyote to 6,750 ft. on the Corona summit, which is the water-shed line between the Rio Grande on the west and the Rio Pecos on the east. At Coyote a pumping station lifts the water to Luna Reservoir and the pumps at Mile 171, and the latter lift it to the reservoir on Corona summit at Mile 192-1/2. This section is 36-1/2 miles long.

The third, or gravity section, extends from the reservoir on the Corona summit to the Rio Pecos at Mile 272, dropping from an elevation of 6,750 to 4,570 ft. in 80 miles. The pipe line extends to Pastura, 58-1/2 miles from Corona, as shown on Plate V.

Where the pipe line passes a water tank on the railway, a 4-in. branch pipe is carried to the bottom of the tank and up to the top, where it is capped by an automatic valve. A gate-valve is placed in the branch pipe at its junction with the pipe line.

There are regulating, relief, check, blow-off, and air-valves, air-chambers, and open stand-pipes on the line, too numerous to mention in detail. They are designed to keep the wood pipe full, regulate flow, prevent accumulation of pressure and water-hammer, and remove sediment.

Water Pipe.—A study of the profile developed a system of hydraulic grades, pipe diameters, and open stand-pipes limiting the pressure to 130 lb. per sq.

Pages