You are here

قراءة كتاب Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910 The New York Tunnel Extension of the Pennsylvania Railroad. The East River Tunnels. Paper No. 1159

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910
The New York Tunnel Extension of the Pennsylvania Railroad.
The East River Tunnels. Paper No. 1159

Transactions of the American Society of Civil Engineers, vol. LXVIII, Sept. 1910 The New York Tunnel Extension of the Pennsylvania Railroad. The East River Tunnels. Paper No. 1159

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 2

compacting of the ground on account of its being dried out by compressed air, it is impossible to say.

The interesting features of this work from East Avenue to the river shafts are the mining methods and the building of the iron tube without a shield.

Excavation In All Rock.

Where the tunnel was all in good rock two distinct methods were used. The first was the bottom-heading-and-break-up, and the second, the top-heading-and-bench method. The first is illustrated by Figs. 1 and 2, Plate LXIII. The bottom heading, 13 ft. wide and 9 ft. high, having first been driven, a break-up was started by blasting down the rock, forming a chamber the full height of the tunnel. The timber platform, shown in the drawing, was erected in the bottom heading, and extended through the break-up chamber. The plan was then to drill the entire face above the bottom heading and blast it down upon the timber staging, thus maintaining a passage below for the traffic from the heading and break-ups farther down the line. Starting with the condition indicated by Plate XIII, the face was drilled, the columns were then taken down and the muck pile was shoveled through holes in the staging into muck cars below. The face was then blasted down upon the staging, the drill columns were set up on the muck pile, and the operation was repeated. This method has the advantage that the bottom heading can be pushed through rapidly, and from it the tunnel may be attacked at a number of points at one time. It was found to be more expensive than the top-heading-and-bench method, and as soon as the depression in the rock at about Station 59 was passed, a top heading about 7 ft. high, and roughly the segment of a 23-ft. circle, was driven to the next soft ground in each of the four tunnels. The remainder of the section was taken out in two benches, the first, about 4 ft. high, was kept about 15 ft. ahead of the lower bench, which was about the remaining 11 ft. high.

Excavation in Earth and Rock.

About 2,500 ft. of tunnel, the roof of which was in soft ground, was excavated in normal air by the mining-and-timbering method. In the greater part of this the rock surface was well above the middle of the tunnel. The method of timbering and mining, while well enough known, has not been generally used in the United States.

Plate LXIII
Plate LXIII

Starting from the break-up in all rock, as described above, and illustrated on Plate XIII, when soft ground was approached, a top heading was driven from the rock into and through the earth. This heading was about 7 ft. high and about 6 ft. wide. This was done by the usual post, cap, and poling-board method. The ground was a running sand with little or no clay, and, at first, considerable water, in places. All headings required side polings. The roof poling boards were about 2-1/2 or 3 ft. above the outside limit of the tunnel lining, as illustrated by Figs. 3, 4, and 5, Plate LXIII. The next step was to place two crown-bars, AA, usually about 20 ft. long, under the caps. Posts were then placed under the bars, and poling boards at right angles to the axis of the tunnel were then driven out over the bars. As these polings were being driven, the side polings of the original heading were removed, and the earth was mined out to the end of these new transverse polings. Breast boards were set on end under the ends of the transverse polings when they had been driven out to their limit. Side bars, BB, were then placed as far out as possible and supported on raking posts. These posts were carried down to rock, if it was near, if not, a sill was placed.

A new set of transverse polings was driven over these side bars and the process was repeated until the sides had been carried down to rock or down to the elevation of the sills supporting the posts, which were usually about 4 ft. above the axis of the tunnel.

The plan then was to excavate the remainder of the section and build the iron lining in short lengths, gradually transferring the weight of the roof bars of the iron lining as the posts were taken out. This meant that not more than four rings, and often only one ring, could be built before excavation and a short length of cradle became necessary. Before the posts under the roof bars could be built and the weight transferred to the iron lining, a grout dam was placed at the leading end of the iron lining, and grout was brought up to at least 45° from the top. Such workings were in progress at as many as eight places in one tunnel at the same time. Where there was only the ordinary ground-water to contend with, the driving of the top heading drained the ground very thoroughly, and the enlarging was done easily and without a serious loss of ground. Under these conditions the surface settlement was from 6 in. to 2 ft.

Under Borden Avenue, there was more water, which probably came from a leaky sewer; it was not enough to form a stream, but just kept the ground thoroughly saturated. There was a continued though hardly perceptible flow of earth through every crevice in the timbering during the six or eight weeks between the driving of the top heading and the placing of the iron lining; and here there was a settlement of from 4 to 8 ft. at the surface.

Tunneling in Compressed Air Without a Shield.

When it became evident that there would not be time for one shield to do the soft ground portions of all four tunnels under the Long Island Railroad station, a plan was adopted and used in Tunnel B which, while not as rapid, turned out to be as cheap as the work done by the shields. Figs. 6 and 7, Plate LXIII, and Fig. 1, Plate LXIV, illustrate this work fairly well. The operation of this scheme was about as follows: Having the iron built up to the face of the full-sized excavation, a hole or top heading, about 3 ft. wide and 4 or 5 ft. high, was excavated to about 10 ft. in advance. This was done in a few hours without timbering of any kind; but, as soon as the hole or heading was 10 ft. out, 6 by 12-in. laggings or polings were put up in the roof, with the rear ends resting on the iron lining and the leading ends resting on vertical breast boards. The heading was then widened out rapidly and the lagging was placed, down to about 45° from the crown. The forward ends of the laggings were then supported by a timber rib and sill. Protected by this roof, the full section was excavated, and three rings of the iron lining were built and grouted, and then the whole process was repeated.

Plate LXIV, Fig. 1.--Tunneling in Compressed Air Without Shield.
Plate LXIV, Fig. 1.—Tunneling in Compressed Air Without Shield.

Pages