You are here
قراءة كتاب Engineering Bulletin No 1: Boiler and Furnace Testing
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Engineering Bulletin No 1: Boiler and Furnace Testing
depth and quartered down until a final average sample is obtained for shipment to a competent chemist, experienced in fuel analysis. (See Bureau of Mines Technical Paper No. 133.)
About 2 quarts of the chemist's sample should be put in air-tight tins or jars for the determination of moisture; the balance of the sample (the total weight of which should be from 10 to 50 pounds, depending on the total weight of coal used in the test) may be packed in a wooden box lined with paper to prevent splinters from mingling with the sample. A duplicate coal sample should be kept at the plant to be used in case of loss of the sample sent to the chemist.
The Bureau of Mines has published a bulletin or pamphlet giving the analyses and heating values of the various kinds and grades of coal from all parts of the United States. (Bureau of Mines Bulletin No. 22.) This bulletin can be used to learn the approximate heating value of the coal. Simply find out what district the coal used in the test came from, and its grade, and then refer to the bulletin to obtain the heating value of the coal. If a chemist can be obtained to make a heat test, however, it is better to use the heating value he determines.
Suppose that during the test the coal used was run-of-mine bituminous having a heating value of 13,500 B. t. u. Every pound of coal fired, then, carried into the furnace 13,500 heat units, and this value therefore is the input to be used in calculating the boiler efficiency.
During the test 5,000 pounds of coal was fired and 35,000 pounds of water was fed and evaporated. This means that 35,000 ÷ 5,000 = 7 pounds of water was evaporated per pound of coal burned. This is the "actual evaporation," and the heat required to evaporate this 7 pounds of water is the output to be used in calculating the efficiency.
Every fireman knows that it takes more coal, and therefore more heat, to make steam with cold feed water than with hot feed water; also, that it is somewhat easier to make steam at a low pressure than at a high pressure. So it is plain that the heat required to evaporate 7 pounds of water into steam depends on two things, namely, (1) the temperature of the feed water and (2) the pressure of the steam in the boiler. From the data of the test, both the average feed-water temperature and the average steam pressure are known, and so it is a simple matter to find out the amount of heat needed to evaporate 7 pounds of water from the average temperature to steam at the average pressure.
A pound of water at 212° F. must have 970.4 B. t. u. added to it to become a pound of steam at 212° F., or zero gage pressure. This value, 970.4 B. t. u., is called the latent heat of steam at atmospheric pressure, or the heat "from and at 212° F." It is the heat required to change a pound of water from 212° F. to steam at 212° F., and is used by engineers as a standard by which to compare the evaporation of different boilers.
In a boiler test the temperature of the feed water is usually something less than 212° F., and the steam pressure is commonly higher than zero, gage. In the test outlined previously, the feed-water temperature was 180° F. and the pressure was 100 pounds per square inch, gage. It must be clear, then, that the amount of heat required to change a pound of water at 180° to steam at 100 pounds gage pressure is not the same as to make a pound of steam from and at 212° F.
To make allowance for the differences in temperature and pressure, the actual evaporation must be multiplied by a number called the "factor of evaporation." The factor of evaporation has a certain value corresponding to every feed-water temperature and boiler pressure, and the values of this factor are given in the accompanying table. Along the top of the table are given the gage pressures of the steam. In the columns at the sides of the table are given the feed-water temperatures. To find the factor of evaporation for a given set of conditions, locate the gage pressure at the top of the table and follow down that column to the horizontal line on which the feed-water temperature is located. The value in this column and on the horizontal line thus found is the factor of evaporation required. If the feed water has a temperature greater than 212° F., obtain the proper factor of evaporation from the Marks and Davis steam tables.
Take the data of the test, for example. The average steam pressure is 100 pounds, gage. The average feed-water temperature is 180° F. So, in the table locate the column headed 100 and follow down this column to the line having 180 at the ends, and the value where the column and the line cross is 1.0727, which is the factor of evaporation for a feed-water temperature of 180° F. and a steam pressure of 100 pounds, gage.
This factor, 1.0727, indicates that to change a pound of water at 180° F. to steam at 100 pounds requires 1.0727 times as much heat as to change a pound of water at 212° F. to steam at atmospheric pressure. In other words, the heat used in producing an actual evaporation of 7 pounds under the test conditions would have evaporated 7 × 1.0727 = 7.5 pounds from and at 212° F. Hence, 7.5 pounds is called the "equivalent evaporation from and at 212° F." per pound of coal used.
As already stated, it takes 970.4 B. t. u. to make a pound of steam from and at 212° F. Then to make 7.5 pounds there would be required 7.5 × 970.4 = 7,278 B. t. u. This is the amount of heat required to change 7.5 pounds of water at 212° F. to steam at zero gage pressure, but it is also the heat required to change 7 pounds of water at 180° F. to steam at 100 pounds gage pressure, because 7.5 pounds from and at 212° F. is equivalent to 7 pounds from 180° F. to steam at 100 pounds. Therefore, the 7,278 B. t. u. is the amount of heat usefully employed in making steam per pound of coal fired, and so it is the output. Accordingly, the efficiency of the boiler is—
~ Efficiency = | Output | = | 7,278 | = 0.54, nearly. |
Input | 13,500 |
In other words, the efficiency of the boiler is 0.54, or 54 per cent, which means that only a little more than half of the heat in the coal is usefully employed in making steam.
The chart shown in figure 3 is given to save the work of figuring the efficiency. If the equivalent evaporation per pound of coal is calculated and the heating value of the coal is known, the boiler efficiency may be found directly from the chart. At the left-hand side locate the point corresponding to the equivalent evaporation and at the bottom locate the point corresponding to the heating value of the coal. Follow the horizontal and vertical lines from these two points until they cross, and note the diagonal line that is nearest to the crossing point. The figures marked on the diagonal line indicate the boiler efficiency.
Take the case just worked out, for example. The equivalent evaporation is 7.5 pounds and the heating value of the fuel is 13,500 B. t. u. At the left of the chart locate the point 7.5 midway between 7 and 8 and at the bottom locate the point 13,500 midway between 13,000 and 14,000. Then follow the horizontal and vertical lines from these two points until they cross, as indicated by the dotted lines. The crossing point lies on the diagonal corresponding to 54, and so