You are here

قراءة كتاب Engineering Bulletin No 1: Boiler and Furnace Testing

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Engineering Bulletin No 1: Boiler and Furnace Testing

Engineering Bulletin No 1: Boiler and Furnace Testing

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 6

produce a boiler efficiency of 65 per cent with coal having a heating value of 13,500 B. t. u. per pound.

Locate 13,500 at the bottom of the chart, follow the vertical line until it meets the diagonal marked 65 per cent, and then from this point follow the horizontal line to the left-hand edge, where the figure 9 is found. This means that the equivalent evaporation from and by 212° F. per pound of coal must be 9 pounds of water. If the steam pressure is 100 pounds gauge, and the feed-water temperature is 180° F. the factor of evaporation is 1.0727, then the actual evaporation must be 9 ÷ 1.0727 = 8.36 pounds per pound of coal. In other words, to increase the efficiency from 54 per cent to 65 per cent under the same conditions of pressure and feed-water temperature, it would be necessary to increase the actual evaporation from 7 pounds to 8.36 pounds. This would mean practically 20 per cent more steam from the same weight of coal used.

Heating Value of Coal, in B. t. u. Per Pound; Fig. 3.

How to do this will require some study and experimenting on the part of the fireman or engineer. The three most common reasons for low-boiler efficiency are (1) excess air, (2) dirty heating surfaces, and (3) loss of coal through the grates. The first of these items is the most important of the three. In most cases the greatest preventable waste of coal in a boiler plant is directly due to excess air. Excess air simply means the amount of air which gets into the furnace and boiler which is not needed for completing the combustion of the coal. Very often twice as much air is admitted to the boiler setting as is required. This extra or excess air is heated and carries heat out through the chimney instead of heating the water in the boiler to make steam. There are two ways in which this excess air gets into the furnace and boiler setting. First, by a combination of bad regulation of drafts and firing. The chances are your uptake damper is too wide open. Try closing it a little. Then, there may be holes in the fire. Keep these covered. The second way excess air occurs is by leakage through the boiler setting, through cracks in the brickwork, leaks around the frames and edges of cleaning doors, and holes around the blow-off pipes. There are also other places where such air can leak in.

Take a torch or candle and go over the entire surface of your boiler setting—front, back, sides, and top. Where the flame of the torch is drawn inward there is an air leak. Plaster up all air leaks and repair the brickwork around door frames where necessary. You should go over your boiler for air leaks once a month.

In regard to best methods of firing soft coal, see Technical Paper No. 80 of the Bureau of Mines, which may be obtained from your State Fuel Administrator.

Dirty heating surfaces cause low efficiency because they prevent the heat in the hot gases from getting through into the water. Therefore, keep the shell and tubes free of soot on one side and scale on the other. Soot may be removed by the daily use of blowers, scrapers, and cleaners. The problem of scale and pure feed water is a big one and should be taken up with proper authorities on the subject.

There are many things that may be done to increase the efficiency of the boiler and to save coal. For convenience a number of these points are grouped in the following list:

Pages