You are here
قراءة كتاب Text Book of Biology, Part 1: Vertebrata
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Text Book of Biology, Part 1: Vertebrata
the rectum. Note that no veins to the inferior vena cava correspond to these arteries-- the blood they supply going back by the portal vein (p.v.). The paired renal arteries (r.a.) supply the kidneys, and the common iliacs (c.il.a.) the hind legs, splitting into the internal iliacs (i.il.a.) and the femoral (f.).
Section 46. The distribution of the veins of the rabbit has only a superficial parallelism with arteries. The chief factors of vena cava inferior are the hepatic vein (h.v.), which receives the liver blood, the renal veins (r.v.), from the kidneys, the ilaeo-lumbar, from the abdominal wall, and the external (e.il.v.) and internal ilias (i.il.v.); with the exception of the renal veins none of these run side by side with arteries. The superior cavae (r. and l.v.c.s.) are formed by the union of internal (i.j.) and external jugular (e.j.) veins with a subclavian (s.cl.v.) from the fore limb. The term pre-caval vein is sometimes used for superior cava. The attention, of the student is called to the small azygos vein (az.) running into the right vena cava superior, and forming the only asymmetrical (not-balancing) feature of the veins in front of the heart; it brings blood back from the ribs of the thorax wall, and is of interest mainly because it answers to an enormous main vessel, the right post-cardinal sinus, in fishes. There are spermatic arteries and veins (s.v. and a.) to the genital organs. All these vessels should be patiently dissected out by the student, and drawn.
Section 47. Between the final branches of the arteries and the first fine factors of the veins, and joining them, come the systemic capillaries. These smallest and ultimate ramifications of the circulation penetrate every living part of the animal, so that if we could isolate the vascular system we should have the complete form of the rabbit in a closely-meshed network. It is in the capillaries that the exchange of gases occurs and that nutritive material passes out to the tissues and katastases in from them; they are the essential factor in the circulatory system of the mammal-- veins, arteries, and heart simply exist to remove and replace their contents. The details of the branching of the pulmonary artery and the pulmonary veins need not detain us now.
Section 48. Summarising the course of the circulation, starting from the right ventricle, we have-- pulmonary artery, pulmonary capillaries, pulmonary vein, left auricle, left ventricle, aorta, arteries, and systemic capillaries. After this, from all parts except the spleen and alimentary canal, the blood returns to systemic veins, superior or inferior cavae, right auricle, and right ventricle. The blood from the stomach spleen, and intestines however, passes via {through} the portal vein to the liver capillaries and then through the hepatic vein to inferior cava, and so on. Material leaves the blood to be excreted in lungs, kidneys, by the skin (as perspiration), and elsewhere. New material enters most conspicuously;
Section 49. The following table summarises what we have learnt up to the present of the physiology of the Rabbit, considered as a mechanism using up food and oxygen and disengaging energy:--
-Air_ {Nitrogen... returned unchanged.}
{Oxygen... through Pulmonary Vein to--} {see 3.}
-Food_ {Carbo-Hydrates (Starch, Sugar, Cellulose.)} Sugar.
{Protein.} {Peptones.}
{Fat (little in Rabbit.)} {Glycerine, and fatty acids in soups.}
{Rejected matter got rid of in Defaecation.}
1a. {Chyle in Lacteals going via {through} Thoracic Duct and Left
Superior Cava to--} {see 2.}
1b. {Veins of Villi--}
{Portal Vein--}
{Liver--}
{Hepatic Vein and Inferior Cava to--} {see 2.}
2. {Right side of heart; then to lungs, and then to--} {see 3.}
3. {Left side of heart; whence to Systemic Arteries and Capillaries.}
4. {The tissues and -Kataboly_.}
5. {Urea (?Liver) Kidney and Sweat Glands}
{CO2} {Lungs}
{H2O} {Lungs, Kidney, Sweat Glands}
{Other Substances} {Mainly by [Kidney,] Liver and Alimentary Canal}
4. _The Amoeba. Cells, and Tissue_
Section 50. We have thus seen how the nutritive material is taken into the animal's system and distributed over its body, and incidentally, we have noted how the resultant products of the creature's activity are removed. The essence of the whole process, as we have already stated, is the decomposition and partial oxydation of certain complex chemical compounds to water, carbon dioxide, a low nitrogenous body, which finally takes the form of urea, and other substances. We may now go on to a more detailed study, the microscopic study, or histology, of the tissues in which metaboly and kataboly occur, but before we do this it will be convenient to glance for a moment at another of our animal types-- the Amoeba, the lowest as the rabbit is the highest, in our series.
Section 51. This is shown in Figure III., Sheet 3, as it would appear under the low power of the microscope. We have a mass of a clear, transparent, greyish substance called protoplasm, granular in places, and with a clearer border; within this is a denser portion called the nucleus, or endoplast (n.), which, under the microscope, by transmitted light, appear brighter, and within that a still denser spot, the nucleolus (ns.) or endoplastule. The protoplasm is more or less extensively excavated by fluid spaces, vacuoles; one clearer circular space or vacuole, which is invariably present, appears at intervals, enlarges gradually, and then vanishes abruptly, to reappear after a brief interval; this is called the contractile vacuole (c.v.). The amoeba is constantly changing its shape, whence its older name of the Proteus animalcule, thrusting out masses of its substance in one direction, and withdrawing from another, and hence slowly creeping about. These thrust-out parts, in its outline, are called pseudopodia (ps.). By means of them it gradually creeps round and encloses its food. Little particles of nutritive matter are usually to be detected in the homogeneous protoplasm of its body; commonly these are surrounded by a drop of water taken in with them, and the drop of water is then called a food vacuole. The process of taking in food is called ingestion. The amoeba, in all probability, performs essentially the same chemical process as we have summarised in Sections 10, 11, 12; it ingests food, digests it in the food vacuoles and builds it up into its body protoplasm, to undergo kataboly and furnish the force of its motion-- the contractile vacuole, is probably respiratory and perhaps excretory,

