You are here

قراءة كتاب The Splash of a Drop

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Splash of a Drop

The Splash of a Drop

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 1


THE SPLASH OF A DROP

BY
Prof. A.M. WORTHINGTON, M.A., F.R.S.

Being the reprint of a Discourse delivered at the Royal Institution
of Great Britain, May 18, 1894.


PUBLISHED UNDER THE DIRECTION OF THE GENERAL
LITERATURE COMMITTEE.


LONDON:
SOCIETY FOR PROMOTING CHRISTIAN KNOWLEDGE,
NORTHUMBERLAND AVENUE, CHARING CROSS, W.C.;
43, QUEEN VICTORIA STREET, E.C.
Brighton: 129, NORTH STREET.
New York: E. & J.B. YOUNG & CO.
1895.



THE SPLASH OF A DROP


INSTANTANEOUS PHOTOGRAPHS OF THE SPLASH OF A WATER-DROP FALLING ABOUT 16 INCHES INTO MILK.

Time after contact = ·0262 sec.Time after contact = ·0262 sec.
Time after contact = ·0391 sec.Time after contact = ·0391 sec.
Time after contact = ·101 sec.Time after contact = ·101 sec.

THE SPLASH OF A DROP

The splash of a drop is a transaction which is accomplished in the twinkling of an eye, and it may seem to some that a man who proposes to discourse on the matter for an hour must have lost all sense of proportion. If that opinion exists, I hope this evening to be able to remove it, and to convince you that we have to deal with an exquisitely regulated phenomenon, and one which very happily illustrates some of the fundamental properties of fluids. It may be mentioned also that the recent researches of Lenard in Germany and J.J. Thomson at Cambridge, on the curious development of electrical charges that accompanies certain kinds of splashes, have invested with a new interest any examination of the mechanics of the phenomenon. It is to the mechanical and not to the electrical side of the question that I shall call your attention this evening.

The first well-directed and deliberate observations on the subject that I am acquainted with were made by a school-boy at Rugby some twenty years ago, and were reported by him to the Rugby Natural History Society. He had observed that the marks of accidental splashes of ink-drops that had fallen on some smoked glasses with which he was experimenting, presented an appearance not easy to account for. Drops of the same size falling from the same height had made always the same kind of mark, which, when carefully examined with a lens, showed that the smoke had been swept away in a system of minute concentric rings and fine striæ. Specimens of such patterns, obtained by letting drops of mercury, alcohol, and water fall on to smoked glass, are thrown on the screen, and the main characteristics are easily recognized. Such a pattern corresponds to the footprints of the dance that has been performed on the surface, and though the drop may be lying unbroken on the plate, it has evidently been taking violent exercise, and were our vision acute enough we might observe that it was still palpitating after its exertions.

A careful examination of a large number of such footprints showed that any opinion that could be formed therefrom of the nature of the motion of the drop must be largely conjectural, and it occurred to me about eighteen years ago to endeavour by means of the illumination of a suitably-timed electric spark to watch a drop through its various changes on impact.

The reason that with ordinary continuous light nothing can be satisfactorily seen of the splash, is not that the phenomenon is of such short duration, but because the changes are so rapid that before the image of one stage has faded from the eye the image of a later and quite different stage is superposed upon it. Thus the resulting impression is a confused assemblage of all the stages, as in the photograph of a person who has not sat still while the camera was looking at him. The problem to be solved experimentally was therefore this: to let a drop of definite size fall from a definite height in comparative darkness on to a surface, and to illuminate it by a flash of exceedingly short duration at any desired stage, so as to exclude all the stages previous and subsequent to the one thus picked out. The flash must be bright enough for the image of what is seen to remain long enough on the eye for the observer to be able to attend to it, and even to shift his attention from one part to another, and thus to make a drawing of what is seen. If necessary the experiment must be capable of repetition, with an exactly similar drop falling from exactly the same height, and illuminated at exactly the same stage. Then, when this stage has been sufficiently studied, we must be able to arrange with another similar drop to illuminate it at a rather later stage, say 11000 second later, and in this way to follow step by step the whole course of the phenomenon.

The apparatus by which this has been accomplished is on the table before you. Time will not suffice to explain how it grew out of earlier arrangements very different in appearance, but its action is very simple and easy to follow by reference to the diagram (Fig. 1).

AA´ is a light wooden rod rather longer and thicker than an ordinary lead pencil, and pivoted on a horizontal axle O. The rod bears at the end A a small deep watch-glass, or segment of a watch-glass, whose surface has been smoked, so that a drop even of water will lie on it without adhesion. The end A´ carries a small strip of tinned iron, which can be pressed against and held down by an electro-magnet CC´. When the current of the electro-magnet is cut off the iron is released, and the end A´ of the rod is tossed up by the action of a piece of india-rubber stretched catapult-wise across two pegs at E, and by this means the drop resting on the watch-glass is left in mid-air free to fall from rest.

Fig. 1.Fig. 1

BB´ is a precisely similar rod worked in just the same way, but carrying at B a small horizontal metal ring, on which an ivory timing sphere of the size of a child's marble can be supported. On cutting off the current of the electro-magnet the ends A´ and B´ of the two levers are simultaneously tossed up by the catapults, and thus drop and sphere begin to fall at the same moment. Before, however, the drop reaches the surface on which it is to impinge, the timing sphere strikes a plate D attached to one end of a third lever pivoted at Q, and thus breaks the contact between a platinum wire bound to the underside of this lever and another wire crossing the first at right angles. This action breaks an electric current which has traversed a second electro-magnet F (Fig. 2), and releases the iron armature N of the lever NP, pivoted at P, thus enabling a strong spiral spring G to lift a stout brass wire L out of mercury, and to break at the surface of the mercury a strong current that has circulated round the primary circuit of a Ruhmkorff's induction coil; this produces at the surface of the mercury a bright self-induction spark in the neighbourhood of the splash, and it is by this flash that the splash is viewed. The

Pages