You are here

قراءة كتاب The Railway Builders: A Chronicle of Overland Highways

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Railway Builders: A Chronicle of Overland Highways

The Railway Builders: A Chronicle of Overland Highways

تقييمك:
0
No votes yet
دار النشر: Project Gutenberg
الصفحة رقم: 3

$4000 a mile. Canal proprietors and toll-road companies had declaimed against the attack on vested rights. Country squires had spluttered over the damage to fox covers. Horses could not plough in neighbouring fields. Widows' strawberry-beds would be ruined. What would become of coachmen and coach-builders and horse-dealers? 'Or suppose a cow were to stray upon the line; would not that be a very awkward circumstance?' queried a committee member, only to give Stephenson an opening for the classic reply in his slow Northumbrian speech: 'Ay, verra awkward for the coo.' And not only would the locomotive as it shot along do such varied damage; in truth, it would not go at all; the wheels, declared eminent experts, would not grip on the smooth rails, or else the engines would prove top-heavy.

To decide the matter, the directors had offered the prize which brought together the Novelty, the Sans-pareil, the Rocket, and the Perseverance, engines which would look almost as strange to a modern crowd as they did to the thousands of spectators drawn up along the track on that momentous morning. The contest was soon decided. The Novelty, an ingenious engine but not substantially built, broke down twice. The Sans-pareil proved wasteful of coal and also met with an accident. The Perseverance, for all its efforts, could do no better than five or six miles an hour. The Rocket alone met all requirements. In a seventy-mile run it averaged fifteen miles an hour and reached a maximum of twenty-nine. Years afterwards, when scrapped to a colliery, the veteran engine was still able, in an emergency, to make four miles in four and a half minutes. 'Truly,' declared Cropper, one of the directors who had stood out for the stationary engine and the miles of rope, 'now has George Stephenson at last delivered himself.'


Stephenson had the good fortune, he had earned it indeed, to put the top brick on the wall, and he alone lives in popular memory. But the railway, like most other great inventions, came about by the toil of hundreds of known and unknown workers, each adding his little or great advance, until at last some genius or some plodder, standing on their failures, could reach success. Both the characteristic features of the modern railway, the iron road and the steam motive power, developed gradually as necessity urged and groping experiment permitted.

The iron road came first. When men began to mine coal in the north of England, the need grew clear of better highways to bear the heavy cart-loads to market or riverside. About 1630 one Master Beaumont laid down broad wooden rails near Newcastle, on which a single horse could haul fifty or sixty bushels of coal. The new device spread rapidly through the whole Tyneside coal-field. A century later it became the custom to nail thin strips of wrought iron to the wooden rails, and about 1767 cast-iron rails were first used. Carr, a Sheffield colliery manager, invented a flanged rail, while Jessop, another colliery engineer, took the other line by using flat rails but flanged cart-wheels. The outburst of canal building in the last quarter of the eighteenth century overshadowed for a time the growth of the iron road, but it soon became clear that the 'tramway' was necessary to supplement, if not to complete, the canal. In 1801 the first public line, the Surrey Iron Railway, was chartered, but it was not until 1825 that the success of the Stockton and Darlington Railway proved that the iron way could be made as useful to the general shipping public as to the colliery owner. At the outset this road was regarded as only a special sort of toll-road upon which any carrier might transport goods or passengers in his own vehicles, but experience speedily made it necessary for the company to undertake the complete service.

It took longer to find the new motive power, but this, too, first came into practical use in the land where peace and liberty gave industry the fostering care which the war-rent Continent could never guarantee. Nowadays it seems a simple thing to turn heat energy into mechanical energy, to utilize the familiar expansive power of water heated to vapour. Yet centuries of experiment, slowly acquired mechanical dexterity, and an industrial atmosphere were needed for the development of the steam-engine, and later of the locomotive. Inventiveness was not lacking in the earlier days. In the second century before Christ, Hero of Alexandria had devised steam fountains and steam turbines, but they remained scientific toys, unless for the miracle-working purposes to which legend says that eastern priests adapted them. So in the seventeenth century, when the Norman, Solomon de Caus, claimed that with the vapour of boiling water he could move carriages and navigate ships, Cardinal Richelieu had him put in prison as a madman. About 1628 an Italian, Giovanni Branca, invented an engine which had the essential features of the modern turbine, but his crude apparatus lacked efficiency.

Once more the coal-mines of England set invention working on a definite, continuous object. As the shafts were sunk to lower and lower levels, it became impossible to pump the water out of the mines by horse power, and the aid of steam was sought. Just at the close of the seventeenth century Savery devised the first commercial steam-engine, or rather steam fountain, which applied cold water to the outside of the cylinder to condense the steam inside and produce a vacuum; while Papin, one of the Huguenot refugees to whom industrial England owed so much, planned the first cylinder and piston engine. Then in 1705 Newcomen and Cawley, working with Savery, took up Papin's idea, separated boiler from cylinder, and thus produced a vacuum into which atmospheric pressure forced the piston and worked the pump. Next Humphrey Potter, a youngster hired to open and shut the valves of a Newcomen engine, made it self-acting by tying cords to the engine-beam, had his hour for play or idling, and proved that if necessity is the mother of invention, laziness is sometimes its father. Half a century passed without material advance; even as perfected in detail by Smeaton, the Newcomen engine required thirty-five pounds of coal to produce one horse-power per hour, as against one pound to-day. Then James Watt, instrument-maker in Glasgow, seeing that much of the waste of steam was due to the alternate chilling and heating of the cylinder, added a separate condenser in which to do the chilling, and kept the temperature of the cylinder uniform by applying a steam-jacket. Later, by applying steam and a vacuum to each side of the piston alternately, and by other improvements, Watt, with his partner Boulton, brought the reciprocating steam-engine to a high stage of efficiency.

It took fifty years longer to combine the steam-engine and the rail. French and American inventors devised steam carriages, which came to nothing. England again led the way. At Redruth in Cornwall Boulton and Watt had a branch for the erection of stationary engines in Cornish tin-mines, in charge of William Murdock, later known as inventor of the system of lighting by gas. Murdock devised a steam carriage to run upon the ordinary highway, but was discouraged by his employers from perfecting the machine. Another mechanic at Redruth, Richard Trevithick, captain in a tin-mine, took up the torch, built a 'Dragon' for use on the common highway, but was baffled by the hopeless badness of the roads, and turned to making a locomotive for use on the iron ways of the Welsh collieries. Two years later, in 1803, he had constructed an ingenious engine, which could haul a ten-ton load five miles an hour, but the engine jolted the road to

Pages