You are here

قراءة كتاب Archimedes

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Archimedes

Archimedes

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

the effect that, if there are two unequal magnitudes of the same kind and from the greater you subtract not less than its half, then from the remainder not less than its half, and so on continually, you will at length have remaining a magnitude less than the lesser of the two magnitudes set out, however small it is. Archimedes says that the theorem of Euclid XII., 2, was proved by means of a certain lemma to the effect that, if we have two unequal magnitudes (i.e. lines, surfaces, or solids respectively), the greater exceeds the lesser by such a magnitude as is capable, if added continually to itself, of exceeding any magnitude of the same kind as the original magnitudes. This assumption is known as the Axiom or Postulate of Archimedes, though, as he states, it was assumed before his time by those who used the method of exhaustion. It is in reality used in Euclid’s lemma (Eucl. X., 1) on which Euclid XII., 2, depends, and only differs in statement from Def. 4 of Euclid, Book V., which is no doubt due to Eudoxus.

The method of exhaustion was not discovered all at once; we find traces of gropings after such a method before it was actually evolved. It was perhaps Antiphon, the sophist, of Athens, a contemporary of Socrates (470-399 B.C.), who took the first step. He inscribed a square (or, according to another account, an equilateral triangle) in a circle, then bisected the arcs subtended by the sides, and so inscribed a polygon of double the number of sides; he then repeated the process, and maintained that, by continuing it, we should at last arrive at a polygon with sides so small as to make the polygon coincident with the circle. Though this was formally incorrect, it nevertheless contained the germ of the method of exhaustion.

Hippocrates, as we have seen, is said to have proved the theorem that circles are to one another as the squares on their diameters, and it is difficult to see how he could have done this except by some form, or anticipation, of the method. There is, however, no doubt about the part taken by Eudoxus; he not only based the method on rigorous demonstration by means of the lemma or lemmas aforesaid, but he actually applied the method to find the volumes (1) of any pyramid, (2) of the cone, proving (1) that any pyramid is one third part of the prism which has the same base and equal height, and (2) that any cone is one third part of the cylinder which has the same base and equal height. Archimedes, however, tells us the remarkable fact that these two theorems were first discovered by Democritus (who flourished towards the end of the fifth century B.C.), though he was not able to prove them (which no doubt means, not that he gave no sort of proof, but that he was not able to establish the propositions by the rigorous method of Eudoxus). Archimedes adds that we must give no small share of the credit for these theorems to Democritus; and this is another testimony to the marvellous powers, in mathematics as well as in other subjects, of the great man who, in the words of Aristotle, “seems to have thought of everything”. We know from other sources that Democritus wrote on irrationals; he is also said to have discussed the question of two parallel sections of a cone (which were evidently supposed to be indefinitely close together), asking whether we are to regard them as unequal or equal: “for if they are unequal they will make the cone irregular as having many indentations, like steps, and unevennesses, but, if they are equal, the cone will appear to have the property of the cylinder and to be made up of equal, not unequal, circles, which is very absurd”. This explanation shows that Democritus was already close on the track of infinitesimals.

Archimedes says further that the theorem that spheres are in the triplicate ratio of their diameters was proved by means of the same lemma. The proofs of the propositions about the volumes of pyramids, cones and spheres are, of course, contained in Euclid, Book XII. (Props. 3-7 Cor., 10, 16-18 respectively).

It is no doubt desirable to illustrate Eudoxus’s method by one example. We will take one of the simplest, the proposition (Eucl. XII., 10) about the cone. Given ABCD, the circular base of the cylinder which has the same base as the cone and equal height, we inscribe the square ABCD; we then bisect the arcs subtended by the sides, and draw the regular inscribed polygon of eight sides, then similarly we draw the regular inscribed polygon of sixteen sides, and so on. We erect on each regular polygon the prism which has the polygon for base, thereby obtaining successive prisms inscribed in the cylinder, and of the same height with it. Each time we double the number of sides in the base of the prism we take away more than half of the volume by which the cylinder exceeds the prism (since we take away more than half of the excess of the area of the circular base over that of the inscribed polygon, as in Euclid XII., 2). Suppose now that V is the volume of the cone, C that of the cylinder. We have to prove that C = 3V. If C is not equal to 3V, it is either greater or less than 3V.

Suppose (1) that C > 3V, and that C = 3V + E. Continue the construction of prisms inscribed in the cylinder until the parts of the cylinder left over outside the final prism (of volume P) are together less than E.

Then C − P < E.
But C − 3V = E;
Therefore P > 3V.

But it has been proved in earlier propositions that P is equal to three times the pyramid with the same base as the prism and equal height.

Therefore that pyramid is greater than V, the volume of the cone: which is impossible, since the cone encloses the pyramid.

Therefore C is not greater than 3V.

Next (2) suppose that C < 3V, so that, inversely,

V > 13 C.

This time we inscribe successive pyramids in the cone until we arrive at a pyramid such that the portions of the cone left over outside it are together less than the excess of V over 13 C. It follows that the pyramid is greater than 13 C. Hence the prism on the same base as the pyramid and inscribed in the cylinder (which prism is three times the pyramid) is greater than C: which is impossible, since the prism is enclosed by the cylinder, and is therefore less than it.

Therefore V is not greater than 13 C, or C is not less than 3V.

Accordingly C, being neither greater nor less than 3V, must be equal to it; that is, V = 13 C.

It only remains to add that Archimedes is fully acquainted with the main properties of the conic sections. These had already been proved in earlier treatises, which Archimedes refers to as the “Elements of Conics”. We know of two such treatises, (1) Euclid’s four Books on Conics, (2) a work by one Aristæus called “Solid Loci,” probably a treatise on conics regarded as loci. Both these treatises are lost; the former was, of course, superseded by Apollonius’s great work on Conics in eight Books.


CHAPTER III.

THE WORKS OF ARCHIMEDES.

The range of Archimedes’s writings will be gathered from the list of his various treatises. An extraordinarily large proportion of their contents

Pages