You are here

قراءة كتاب Archimedes

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Archimedes

Archimedes

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 9

another figure, B say, being such a figure that its area or content and the position of its centre of gravity are already known. The diameter or axis of the figure X being drawn, the infinitesimal elements taken are parallel sections of X in general, but not always, at right angles to the axis or diameter, so that the centres of gravity of all the sections lie at one point or other of the axis or diameter and their weights can therefore be taken as acting at the several points of the diameter or axis. In the case of a plane figure the infinitesimal sections are spoken of as parallel straight lines and in the case of a solid figure as parallel planes, and the aggregate of the infinite number of sections is said to make up the whole figure X. (Although the sections are so spoken of as straight lines or planes, they are really indefinitely narrow plane strips or indefinitely thin laminae respectively.) The diameter or axis is produced in the direction away from the figure to be measured, and the diameter or axis as produced is imagined to be the bar or lever of a balance. The object is now to apply all the separate elements of X at one point on the lever, while the corresponding elements of the known figure B operate at different points, namely, where they actually are in the first instance. Archimedes contrives, therefore, to move the elements of X away from their original position and to concentrate them at one point on the lever, such that each of the elements balances, about the point of suspension of the lever, the corresponding element of B acting at its centre of gravity. The elements of X and B respectively balance about the point of suspension in accordance with the property of the lever that the weights are inversely proportional to the distances from the fulcrum or point of suspension. Now the centre of gravity of B as a whole is known, and it may then be supposed to act as one mass at its centre of gravity. (Archimedes assumes as known that the sum of the “moments,” as we call them, of all the elements of the figure B, acting severally at the points where they actually are, is equal to the moment of the whole figure applied as one mass at one point, its centre of gravity.) Moreover all the elements of X are concentrated at the one fixed point on the bar or lever. If this fixed point is H, and G is the centre of gravity of the figure B, while C is the point of suspension,

X : B = CG : CH.

Thus the area or content of X is found.

Conversely, the method can be used to find the centre of gravity of X when its area or volume is known beforehand. In this case the elements of X, and X itself, have to be applied where they are, and the elements of the known figure or figures have to be applied at the one fixed point H on the other side of C, and since X, B and CH are known, the proportion

B : X = CG : CH

determines CG, where G is the centre of gravity of X.

The mechanical method is used for finding (1) the area of any parabolic segment, (2) the volume of a sphere and a spheroid, (3) the volume of a segment of a sphere and the volume of a right segment of each of the three conicoids of revolution, (4) the centre of gravity (a) of a hemisphere, (b) of any segment of a sphere, (c) of any right segment of a spheroid and a paraboloid of revolution, and (d) of a half-cylinder, or, in other words, of a semicircle.

Archimedes then proceeds to find the volumes of two solid figures, which are the special subject of the treatise. The solids arise as follows:—

(1) Given a cylinder inscribed in a rectangular parallelepiped on a square base in such a way that the two bases of the cylinder are circles inscribed in the opposite square faces, suppose a plane drawn through one side of the square containing one base of the cylinder and through the parallel diameter of the opposite base of the cylinder. The plane cuts off a solid with a surface resembling that of a horse’s hoof. Archimedes proves that the volume of the solid so cut off is one sixth part of the volume of the parallelepiped.

(2) A cylinder is inscribed in a cube in such a way that the bases of the cylinder are circles inscribed in two opposite square faces. Another cylinder is inscribed which is similarly related to another pair of opposite faces. The two cylinders include between them a solid with all its angles rounded off; and Archimedes proves that the volume of this solid is two-thirds of that of the cube.

Having proved these facts by the mechanical method, Archimedes concluded the treatise with a rigorous geometrical proof of both propositions by the method of exhaustion. The MS. is unfortunately somewhat mutilated at the end, so that a certain amount of restoration is necessary.

I shall now attempt to give a short account of the other treatises of Archimedes in the order in which they appear in the editions. The first is—

On the Sphere and Cylinder.

Book I. begins with a preface addressed to Dositheus (a pupil of Conon), which reminds him that on a former occasion he had communicated to him the treatise proving that any segment of a “section of a right-angled cone” (i.e. a parabola) is four-thirds of the triangle with the same base and height, and adds that he is now sending the proofs of certain theorems which he has since discovered, and which seem to him to be worthy of comparison with Eudoxus’s propositions about the volumes of a pyramid and a cone. The theorems are (1) that the surface of a sphere is equal to four times its greatest circle (i.e. what we call a “great circle” of the sphere); (2) that the surface of any segment of a sphere is equal to a circle with radius equal to the straight line drawn from the vertex of the segment to a point on the circle which is the base of the segment; (3) that, if we have a cylinder circumscribed to a sphere and with height equal to the diameter, then (a) the volume of the cylinder is 1½ times that of the sphere and (b) the surface of the cylinder, including its bases, is 1½ times the surface of the sphere.

Next come a few definitions, followed by certain Assumptions, two of which are well known, namely:—

1. Of all lines which have the same extremities the straight line is the least (this has been made the basis of an alternative definition of a straight line).

2. Of unequal lines, unequal surfaces and unequal solids the greater exceeds the less by such a magnitude as, when (continually) added to itself, can be made to exceed any assigned magnitude among those which are comparable [with it and] with one another (i.e. are of the same kind). This is the Postulate of Archimedes.

He also assumes that, of pairs of lines (including broken lines) and pairs of surfaces, concave in the same direction and bounded by the same extremities, the outer is greater than the inner. These assumptions are fundamental to his investigation, which proceeds throughout by means of figures inscribed and circumscribed to the curved lines or surfaces that have to be measured.

After some preliminary propositions Archimedes finds (Props. 13, 14) the area of the surfaces (1) of a right cylinder, (2) of a right cone. Then, after quoting certain Euclidean propositions about cones and cylinders, he passes to the main business of the book, the measurement of the volume and surface of a sphere and a segment of a sphere. By circumscribing and inscribing to a great circle a regular polygon of an even number of sides and making it revolve about a diameter connecting two opposite angular points he obtains solids of revolution greater and less respectively than the sphere. In a series of propositions he finds expressions for

Pages