You are here

قراءة كتاب The Seven Follies of Science [2nd ed.] A popular account of the most famous scientific impossibilities and the attempts which have been made to solve them. To which is added a small budget of interesting paradoxes, illusions, and marvels

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Seven Follies of Science [2nd ed.]
A popular account of the most famous scientific impossibilities and the attempts which have been made to solve them. To which is added a small budget of interesting paradoxes, illusions, and marvels

The Seven Follies of Science [2nd ed.] A popular account of the most famous scientific impossibilities and the attempts which have been made to solve them. To which is added a small budget of interesting paradoxes, illusions, and marvels

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

Whereupon De Morgan offers the following exceedingly interesting continuation of the legend:

"The recorded story is that Michael Scott, being bound by contract to procure perpetual employment for a number of young demons, was worried out of his life in inventing jobs for them, until at last he set them to make ropes out of sea-sand, which they never could do. We have obtained a very curious correspondence between the wizard Michael and his demon slaves; but we do not feel at liberty to say how it came into our hands. We much regret that we did not receive it in time for the British Association. It appears that the story, true as far as it goes, was never finished. The demons easily conquered the rope difficulty, by the simple process of making the sand into glass, and spinning the glass into thread which they twisted. Michael, thoroughly disconcerted, hit upon the plan of setting some to square the circle, others to find the perpetual motion, etc. He commanded each of them to transmigrate from one human body into another, until their tasks were done. This explains the whole succession of cyclometers and all the heroes of the Budget. Some of this correspondence is very recent; it is much blotted, and we are not quite sure of its meaning. It is full of figurative allusions to driving something illegible down a steep into the sea. It looks like a humble petition to be allowed some diversion in the intervals of transmigration; and the answer is:

"'Rumpat et serpens iter institutum'

"a line of Horace, which the demons interpret as a direction to come athwart the proceedings of the Institute by a sly trick."

And really those who have followed carefully the history of the men who have claimed that they had solved these famous problems, will be almost inclined to accept De Morgan's ingenious explanation as something more than a mere "skit." The whole history of the philosopher's stone, of machines and contrivances for obtaining perpetual motion, and of circle-squaring, is permeated with accounts of the most gross and obvious frauds. That ignorance played an important part in the conduct of many who have put forth schemes based upon these pretended solutions is no doubt true, but that a deliberate attempt at absolute fraud was the mainspring in many cases cannot be denied. Like Dousterswivel in "The Antiquary," many of the men who advocated these delusions may have had a sneaking suspicion that there might be some truth in the doctrines which they promulgated; but most of them knew that their particular claims were groundless, and that they were put forward for the purpose of deceiving some confiding patron from whom they expected either money or the credit and glory of having done that which had been hitherto considered impossible.

Some of the questions here discussed have been called "scientific impossibilities"—an epithet which many have considered entirely inapplicable to any problem, on the ground that all things are possible to science. And in view of the wonderful things that have been accomplished in the past, some of my readers may well ask: "Who shall decide when doctors disagree?"

Perhaps the best answer to this question is that given by Ozanam, the old historian of these and many other scientific puzzles. He claimed that "it was the business of the Doctors of the Sorbonne to discuss, of the Pope to decide, and of a mathematician to go straight to heaven in a perpendicular line!"

In this connection the words of De Morgan have a deep significance. Alluding to the difficulty of preventing men of no authority from setting up false pretensions and the impossibility of destroying the assertions of fancy speculation, he says: "Many an error of thought and learning has fallen before a gradual growth of thoughtful and learned opposition. But such things as the quadrature of the circle, etc., are never put down. And why? Because thought can influence thought, but thought cannot influence self-conceit; learning can annihilate learning; but learning cannot annihilate ignorance. A sword may cut through an iron bar, and the severed ends will not reunite; let it go through the air, and the yielding substance is whole again in a moment."


I.
SQUARING THE CIRCLE

U

ndoubtedly one of the reasons why this problem has received so much attention from those whose minds certainly have no special leaning towards mathematics, lies in the fact that there is a general impression abroad that the governments of Great Britain and France have offered large rewards for its solution. De Morgan tells of a Jesuit who came all the way from South America, bringing with him a quadrature of the circle and a newspaper cutting announcing that a reward was ready for the discovery in England. As a matter of fact his method of solving the problem was worthless, and even if it had been valuable, there would have been no reward.

Another case was that of an agricultural laborer who spent his hard-earned savings on a journey to London, carrying with him an alleged solution of the problem, and who demanded from the Lord Chancellor the sum of one hundred thousand pounds, which he claimed to be the amount of the reward offered and which he desired should be handed over forthwith. When he failed to get the money he and his friends were highly indignant and insisted that the influence of the clergy had deprived the poor man of his just deserts!

And it is related that in the year 1788, one of these deluded individuals, a M. de Vausenville, actually brought an action against the French Academy of Sciences to recover a reward to which he felt himself entitled. It ought to be needless to say that there never was a reward offered for the solution of this or any other of the problems which are discussed in this volume. Upon this point De Morgan has the following remarks:

"Montucla says, speaking of France, that he finds three notions prevalent among the cyclometers [or circle-squarers]: 1. That there is a large reward offered for success; 2. That the longitude problem depends on that success; 3. That the solution is the great end and object of geometry. The same three notions are equally prevalent among the same class in England. No reward has ever been offered by the government of either country. The longitude problem in no way depends upon perfect solution; existing approximations are sufficient to a point of accuracy far beyond what can be wanted. And geometry, content with what exists, has long pressed on to other matters. Sometimes a cyclometer persuades a skipper, who has made land in the wrong place, that the astronomers are in fault for using a wrong measure of the circle; and the skipper thinks it a very comfortable solution! And this is the utmost that the problem ever has to do with longitude."

In the year 1775 the Royal Academy of Sciences of Paris passed a resolution not to entertain communications which claimed to give solutions of any of the following problems: The duplication of the cube, the trisection of an angle, the quadrature of a circle, or any machine announced as showing perpetual motion. And we have heard that the Royal Society of London passed similar resolutions, but of course in the case of neither society did these resolutions exclude legitimate mathematical investigations—the famous computations of Mr. Shanks, to which we shall have occasion to refer hereafter, were submitted to the Royal Society of London and published in their Transactions. Attempts to "square the

Pages