You are here
قراءة كتاب The Seven Follies of Science [2nd ed.] A popular account of the most famous scientific impossibilities and the attempts which have been made to solve them. To which is added a small budget of interesting paradoxes, illusions, and marvels
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
![The Seven Follies of Science [2nd ed.]
A popular account of the most famous scientific impossibilities and the attempts which have been made to solve them. To which is added a small budget of interesting paradoxes, illusions, and marvels The Seven Follies of Science [2nd ed.]
A popular account of the most famous scientific impossibilities and the attempts which have been made to solve them. To which is added a small budget of interesting paradoxes, illusions, and marvels](https://files.ektab.com/php54/s3fs-public/styles/linked-image/public/book_cover/gutenberg/defaultCover_4.jpg?itok=gy-MhhaA)
The Seven Follies of Science [2nd ed.] A popular account of the most famous scientific impossibilities and the attempts which have been made to solve them. To which is added a small budget of interesting paradoxes, illusions, and marvels
extent of which is such that light, traveling at the rate we have named (185,000 miles per second), would take millions of millions of years to pass across it, and let us further suppose that we know the diameter of this mighty space with perfect accuracy; then, using Mr. Shanks' 707 places of decimal fractions, we could calculate the circumference to such a degree of accuracy that the error would not be visible under any microscope now made.
An illustration which may impress some minds even more forcibly than either of those which we have just given, is as follows:
Let us suppose that in some titanic iron-works a steel armor-plate had been forged, perfectly circular in shape and having a diameter of exactly 185,000,000 miles, or very nearly that of the orbit of the earth, and a thickness of 8000 miles, or about that of the diameter of the earth. Let us further assume that, owing to the attraction of some immense stellar body, this huge mass has what we would call a weight corresponding to that which a plate of the same material would have at the surface of the earth, and let it be required to calculate the length of the side of a square plate of the same material and thickness and which shall be exactly equal to the circular plate.
Using the 707 places of figures of Mr. Shanks, the length of the required side could be calculated so accurately that the difference in weight between the two plates (the circle and the square) would not be sufficient to turn the scale of the most delicate chemical balance ever constructed.
Of course in assuming the necessary conditions, we are obliged to leave out of consideration all those more refined details which would embarrass us in similar calculations on the small scale and confine ourselves to the purely mathematical aspect of the case; but the stretch of imagination required is not greater than that demanded by many illustrations of the kind.
So much, then, for what is claimed by the mathematicians; and the certainty that their results are correct, as far as they go, is shown by the predictions made by astronomers in regard to the moon's place in the heavens at any given time. The error is less than a second of time in twenty-seven days, and upon this the sailor depends for a knowledge of his position upon the trackless deep. This is a practical test upon which merchants are willing to stake, and do stake, billions of dollars every day.
It is now well established that, like the diagonal and side of a square, the diameter and circumference of any circle are incommensurable quantities. But, as De Morgan says, "most of the quadrators are not aware that it has been fully demonstrated that no two numbers whatsoever can represent the ratio of the diameter to the circumference, with perfect accuracy. When, therefore, we are told that either 8 to 25 or 64 to 201 is the true ratio, we know that it is no such thing, without the necessity of examination. The point that is left open, as not fully demonstrated to be impossible, is the geometrical quadrature, the determination of the circumference by the straight line and circle, used as in Euclid."
But since De Morgan wrote, it has been shown that a Euclidean construction is actually impossible. Those who desire to examine the question more fully, will find a very clear discussion of the subject in Klein's "Famous Problems in Elementary Geometry." (Boston, Ginn & Co.)
There are various geometrical constructions which give approximate results that are sufficiently accurate for most practical purposes. One of the oldest of these makes the ratio 31⁄7 to 1. Using this ratio we can ascertain the circumference of a circle of which the diameter is given by the following method: Divide the diameter into 7 equal parts by the usual method. Then, having drawn a straight line, set off on it three times the diameter and one of the sevenths; the result will give the circumference with an error of less than the one twenty-five-hundredth part or one twenty-fifth of one per cent.
If the circumference had been given, the diameter might have been found by dividing the circumference into twenty-two parts and setting off seven of them. This would give the diameter. A more accurate method is as follows:
Given a circle, of which it is desired to find the length of the circumference: Inscribe in the given circle a square, and to three times the diameter of the circle add a fifth of the side of the square; the result will differ from the circumference of the circle by less than one-seventeen-thousandth part of it. Another method which gives a result accurate to the one-seventeen-thousandth part is as follows: