You are here
قراءة كتاب Lord Kelvin: An account of his scientific life and work
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Lord Kelvin: An account of his scientific life and work
commemoration of the society, 1893, Lord Kelvin recalled that Mendelssohn, Weber and Beethoven were the "gods" of the infant association. Those of his pupils who came more intimately in contact with him will remember his keen admiration for these and other great composers, especially Bach, Mozart, and Beethoven, and his delight in hearing their works. The Waldstein sonata was a special favourite. It has been remarked before now, and it seems to be true, that the music of Bach and Beethoven has had special attractions for many great mathematicians.
At Cambridge Thomson made the acquaintance of George Gabriel Stokes, who graduated as Senior Wrangler and First Smith's Prizeman in 1841, and eight years later became Lucasian Professor of Mathematics in the University of Cambridge. Their acquaintance soon ripened into a close friendship, which lasted until the death of Stokes in 1903. The Senior Wrangler and the Peterhouse Undergraduate undertook the composition of a series of notes and papers on points in pure and physical mathematics which required clearing up, or putting in a new point of view; and so began a life-long intercourse and correspondence which was of great value to science.
Thomson's papers of this period are on a considerable variety of subjects, including his favourite subject of the flux of heat. There are sixteen in all that seem to have been written and published during his undergraduate residence at Cambridge. Most of them appeared in the Cambridge Mathematical Journal between 1842 and 1845; but three appeared in 1845 in Liouville's Journal de Mathématiques. Four are on subjects of pure mathematics, such as Dupin's theorem regarding lines of curvature of orthogonally intersecting surfaces, the reduction of the general equation of surfaces of the second order (now called second degree), six are on various subjects of the theory of heat, one is on attractions, five are on electrical theory, and one is on the law of gravity at the surface of a revolving homogeneous fluid. It is impossible to give an account of all these papers here. Some of them are new presentations or new proofs of known theorems, one or two are fresh and clear statements of fundamental principles to be used later as the foundation of more complete statements of mathematical theory; but all are marked by clearness and vigour of treatment.
Another paper, published in the form of a letter, of date October 8, 1845, to M. Liouville, and published in the Journal de Mathématiques in the same year, indicates that either before or shortly after taking his degree, Thomson had invented his celebrated method of "Electric Images" for the solution of problems of electric distribution. Of this method, which is one of the most elegant in the whole range of physical mathematics, and solves at a stroke some problems, otherwise almost intractable, we shall give some account in the following chapter.
This record of work is prodigious for a student reading for the mathematical tripos; and it is somewhat of an irony of fate that such scientific activity is, on the whole, rather a hindrance than a help in the preparation for that elaborate ordeal of examination. Great expectations had been formed regarding Thomson's performance; hardly ever before had a candidate appeared who had done so much and so brilliant original work, and there was little doubt that he would be easily first in any contest involving real mathematical power, that is, ability to deal with new problems and to express new relations of facts in mathematical language. But the tripos was not a test of power merely; it was a test also of acquisition, and, to candidates fairly equal in this respect, also of memory and of quickness of reproduction on paper of acquired knowledge.
The moderators on the occasion were Robert Leslie Ellis and Harvey Goodwin, both distinguished men. Ellis had been Senior Wrangler and first Smith's Prizeman a few years before, and was a mathematician of original power and promise, who had already written memoirs of great merit. Goodwin had been Second Wrangler when Ellis was Senior, and became known to a later generation as Bishop of Carlisle. In a life of Ellis prefixed to a volume of his collected papers, Goodwin says:—"It was in this year that Professor W. Thomson took his degree; great expectations had been excited concerning him, and I remember Ellis remarking to me, with a smile, 'You and I are just about fit to mend his pens.'" Surely never was higher tribute paid to candidate by examiner!
Another story, which, however, does not seem capable of such complete authentication, is told of the same examination, or it may be of the Smith's Prize Examination which followed. A certain problem was solved, so it is said, in practically identical terms by both the First and Second Wranglers. The examiners remarked the coincidence, and were curious as to its origin. On being asked regarding it, the Senior Wrangler replied that he had seen the solution he gave in a paper which had appeared in a recent number of the Cambridge Mathematical Journal; Thomson's answer was that he was the author of the paper in question! Thomson was Second Wrangler, and Parkinson, of St. John's College, afterwards. Dr. Parkinson, tutor of St. John's and author of various mathematical text-books, was Senior. These positions were reversed in the examination for Smith's Prizes, which was very generally regarded as a better test of original ability than the tripos, so that the temporary disappointment of Thomson's friends was quickly forgotten in this higher success.
The Tripos Examination was held in the early part of January. On the 25th of that month Thomson met his private tutor Hopkins in the "Senior Wranglers' Walk" at Cambridge, and in the course of conversation referred to his desire to obtain a copy of Green's 'Essay' (supra, p. 21). Hopkins at once took him to the rooms where he had attended almost daily for a considerable time as a pupil, and produced no less than three copies of the Essay, and gave him one of them. A hasty perusal showed Thomson that all the general theorems of attractions contained in his paper "On the Uniform Motion of Heat," etc., as well as those of Gauss and Chasles, had been set forth by Green and were derivable from a general theorem of analysis whereby a certain integral taken throughout a space bounded by surfaces fulfilling a certain condition is expressed as two integrals, one taken throughout the space, the other taken over the bounding surface or surfaces.
It has been stated in the last chapter that Thomson had established, as a deduction from the flow of heat in a uniform solid from sources distributed within it, the remarkable theorem of the replacement, without alteration of the external flow, of these sources by a certain distribution over any surface of uniform temperature, and had pointed out the analogue of this theorem in electricity. This method of proof was perfectly original and had not been anticipated, though the theorem, as has been stated, had already been given by Green and by Gauss. In the paper entitled "Propositions in the Theory of Attraction," published in the Cambridge Mathematical Journal in November 1842, Thomson gave an analytical proof of this great theorem, but afterwards found that this had been done almost contemporaneously by Sturm in Liouville's Journal.
Soon after the Tripos and Smith's Prize Examinations were over, Thomson went to London, and visited Faraday in his laboratory in the Royal Institution. Then he went on to Paris with his friend Hugh Blackburn, and spent the summer working in Regnault's famous laboratory,