You are here
قراءة كتاب Lord Kelvin: An account of his scientific life and work
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Lord Kelvin: An account of his scientific life and work
making the acquaintance of Liouville, Sturm, Chasles, and other French mathematicians of the time, and attending meetings of the Académie des Sciences. He made known to the mathematicians of Paris Green's 'Essay,' and the treasures it contained, and frequently told in after years with what astonishment its results were received. He used to relate that one day, while he and Blackburn sat in their rooms, they heard some one come panting up the stair. Sturm burst in upon them in great excitement, and exclaimed, "Vous avez un Mèmoire de Green! M. Liouville me l'a dit." He sat down and turned over the pages of the 'Essay,' looking at one result after another, until he came to a complete anticipation of his proof of the replacement theorem. He jumped up, pointed to the page, and cried out, "Voila mon affaire!"
To this visit to Paris Thomson often referred in later life with grateful recognition of Regnault's kindness, and admiration of his wonderful experimental skill. The great experimentalist was then engaged in his researches on the thermal constants of bodies, with the elaborate apparatus which he designed for himself, and with which he was supplied by the wise liberality of the French Government. This initiation into laboratory work bore fruit not long after in the establishment of the Glasgow Physical Laboratory, the first physical laboratory for students in this country.
It is a striking testimony to Thomson's genius that, at the age of only seventeen, he had arrived at such a fundamental and general theorem of attractions, and had pointed out its applications to electrical theory. And it is also very remarkable that the theorem should have been proved within an interval of two or three years by three different authors, two of them—Sturm and Gauss—already famous as mathematicians. Green's treatment of the subject was, however, the most general and far-reaching, for, as has been stated, the theorem of Gauss, Sturm, and Thomson was merely a particular case of a general theorem of analysis contained in Green's 'Essay.' It has been said in jest, but not without truth, that physical mathematics is made up of continued applications of Green's theorem. Of this enormously powerful relation, a more lately discovered result, which is very fundamental in the theory of functions of a complex variable, and which is generally quoted as Riemann's theorem, is only a particular case.
Thomson had the greatest reverence for the genius of Green, and found in his memoirs, and in those of Cauchy on wave propagation, the inspiration for much of his own later work.7 In 1850 he obtained the republication of Green's 'Essay' in Crelle's Journal; in later years he frequently expressed regret that it had not been published in England.
In the commencement of 1845 Thomson told Liouville of the method of Electric Images which he had discovered for the solution of problems of electric distribution. On October 8, 1845, after his return to Cambridge, he wrote to Liouville a short account of the results of the method in a number of different cases, and in two letters written on June 26 and September 16 of the following year, he stated some further results, including the solution of the problem of the distribution upon a spherical bowl (a segment of a spherical conducting shell made by a plane section) insulated and electrified. This last very remarkable result was given without proof, and remained unproved until Thomson published his demonstration twenty-three years later in the Philosophical Magazine.8 This had been preceded by a series of papers in March, May, and November 1848, November 1849, and February 1850, in the Cambridge and Dublin Mathematical Journal, on various parts of the mathematical theory of electricity in equilibrium,9 in which the theory of images is dealt with. The letters to Liouville promptly appeared in the Journal, and the veteran analyst wrote a long Note on their subject, which concludes as follows: "Mon but sera rempli, je le répéte, s'ils [ces développements] peuvent aider à bien faire comprendre la haute importance du travail de ce jeune géomètre, et si M. Thomson lui-même veut bien y voir une preuve nouvelle de l'amitié que je lui porte et de l'estime qui j'ai pour son talent."
The method of images may be regarded as a development in a particular direction of the paper "On the Uniform Motion of Heat" already referred to, and, taken along with this latter paper, forms the most striking indication afforded by the whole range of Thomson's earlier work of the strength and originality of his mathematical genius. Accordingly a chapter is here devoted to a more complete explanation of the first paper and the developments which flowed from it. The general reader may pass over the chapter, and return to it from time to time as he finds opportunity, until it is completely understood.
CHAPTER IV
THE MATHEMATICAL THEORY OF ELECTRICITY IN EQUILIBRIUM. ELECTRIC IMAGES. ELECTRIC INVERSION
In describing Thomson's early electrical researches we shall not enter into detailed calculations, but merely explain the methods employed. The meaning of certain technical terms may be recalled in the first place.
The whole space in which a distribution of electricity produces any action on electrified bodies is called the electrical field of the distribution. The force exerted on a very small insulated trial conductor, on which is an electric charge of amount equal to that taken as the unit quantity of electricity, measures the field-intensity at any point at which the conductor is placed. The direction of the field-intensity at the point is that in which the small conductor is there urged. If the charge on the small conductor were a negative unit, instead of a positive, the direction of the force would be reversed; the magnitude of the force would remain the same. To make the field-intensity quite definite, a positive unit is chosen for its specification. For a charge on the trial-conductor consisting of any number of units, the force is that number of times the field-intensity. The field-intensity is often specified by its components, X, Y, Z in three chosen directions at right angles to one another.
Now in all cases in which the action, whether attraction or repulsion, between two unit quantities of matter concentrated at points is inversely as the square of the distance between the charges, the field-intensity, or its components, can be found from a certain function V of the charges forming the acting distribution [which is always capable of being regarded for mathematical purposes as a system of small charges existing at points of space, point-charges we shall call them], their positions, and the position of the point at which the field-intensity is to be found. If q1, q2, ... be the point-charges, and be positive when the charges are positive and negative when the charges are negative, and r1, r2, ... be their distances from the point P, V is