You are here
قراءة كتاب Animal Proteins
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
id="Page_3" class="x-ebookmaker-pageno" title="[Pg 3]"/> acetic acid), cystine (a thioserine anhydride), glucosamine, and urea.
There are a few general reactions which are typical of all proteins, and which can usually be traced to definite groupings in the molecule. Amongst these is the biuret reaction: a pink colour obtained by adding a trace of copper sulphate and an excess of caustic soda. This is caused by the biuret, NH(CONH2)2 radical or by similar diacidamide groups, e.g. malonamide, oxamide, glycine amide. Another general reaction is with "Millon's reagent," a solution of mercuric nitrate containing nitrous fumes. On warming the proteid with this reagent, a curdy pink precipitate or a red colour is obtained. This reaction is caused by the tyrosine group (p. oxy α amido phenyl-propionic acid). Another general reaction is to boil the protein with 1:2 nitric acid for some days. A yellow flocculent precipitate of "xanthoproteic acid" is obtained, and this dissolves in ammonia and caustic alkalies with a brown or orange-red colour. Another characteristic of proteins is that on dry distillation they yield mixtures of pyridine C5H5N, pyrrol C4H5N, and their derivatives.
On the subdivision, classification and nomenclature of the proteins much ink has been spilled, and it is impossible in this volume to go into the various systems which have been suggested. It should be noted, however, that some writers habitually use the terms "proteid" or "albuminoid" as synonyms for protein. The classification of proteins adopted in this work is used because it is the most suitable for a volume on industrial chemistry and has the additional merits that it is simple and is already used in several standard works on industrial chemistry. It is based upon the behaviour of the proteins towards water, a matter of obvious moment in manufacturing processes. On this basis proteins may be divided into albumins, keratins and gelatins.
Cold water dissolves the albumins, does not affect the keratins, and only swells the gelatins. The behaviour in hot water confirms and elaborates the classification. When heated in water, the albumins coagulate at temperatures of 70°-75° C., the gelatins (if swollen) dissolve readily, whilst the keratins only dissolve at temperatures above 100° C. Albumins and keratins may be distinguished also from gelatins by adding acetic acid and potassium ferrocyanide to their aqueous solutions. Albumins and keratins give a precipitate, gelatins do not. Another distinguishing reaction is to boil with alcohol, wash with ether, and heat with hydrochloric acid (S.G. 1.2). Albumins give a violet colour, keratins and gelatins do not.
Albumins may be first discussed. They are typified by the casein of milk and by white of egg. Their solutions in water are faintly alkaline, optically active, and lævorotatory. They are coagulated by heat and also by mineral acids, alcohol, and by many poisons. The temperature of coagulation (usually about 72° C.) is affected by mineral salts, the effect being in lyotrope order (see Part V., Section I.). The coagulated albumin behaves in most respects like a keratin. Some of the albumins (globulins) are, strictly speaking, not soluble in cold water, but readily dissolve in weak solutions of salt. The albumins are coagulated from these solutions, as usual, when heated. Into this special class fall myosin (of the muscles), fibrinogen (of the blood) and vitellin (of egg yolk). By a gentle or limited hydrolysis of the albumins with dilute acids in the cold, a group of compounds called albuminates are obtained. They dissolve in either acids or alkalies, and are precipitated by exact neutralization. They may also be "salted" out by adding sodium chloride or magnesium sulphate. They are not coagulated by heat. After further hydrolysis with either acids, alkalies or ferments, very soluble compounds are obtained called albumin peptones or albumoses. These are soluble in alkalies, acids and water, and are readily hydrolyzed further into amido acids and acid amides. They are very similar to the peptones obtained from keratins and gelatins. They are not coagulated by heat.
Keratins are typified by the hair of animals. They soften somewhat in cold water and even more in hot water, but are not dissolved until digested for some time at temperatures exceeding 100° C. With some keratins, however, the cystine group is to some extent easily split off by warm water, and on boiling with water hydrogen sulphide is evolved. The sulphur content of keratins is often greater than the average for proteids. All keratins are dissolved with great readiness by solutions containing sulphydrates and hydrates, e.g. a solution of sodium sulphide. In solutions of the hydrates of the alkali and alkaline earth metals, keratins behave differently. Some dissolve with great ease, some with difficulty, some only on heating and some not even if digested with hot caustic soda. They are dissolved (with hydrolysis) by heating with mineral acids, yielding peptones and eventually amido acids, acid amides, etc. Many keratins have a comparatively low content of nitrogen.
Gelatins are very difficult to distinguish from one another, their behaviour being closely similar to reagents. They are also very readily hydrolyzed even with water, and the products of hydrolysis are even more similar. The gelatins are known together, commercially, under the general name of gelatine. Gelatins of different origin, however, have undoubtedly a different composition, the nitrogen content being variable. If the gelatins are not bleached whilst they are being manufactured into commercial gelatine, they are called "glue." Gelatine is colourless, transparent, devoid of taste and smell. It is usually brittle. Its S.G. is about 1.42, and it melts at 140° C. and decomposes. It is insoluble in organic solvents. When swelling in cold water it may absorb up to 12 times its own weight of water. The swollen product is called a "jelly." Jellies easily melt on heating and a colloidal solution of gelatine is obtained. This "sets" again to a jelly on cooling, even if only 1 per cent. gelatin (or less) be present. The solution is optically active and lævorotatory, but with very variable specific rotation. Some observers have thought that the different gelatins have different specific rotations and may so be distinguished. Gelatins are precipitated from solutions by many reagents, such as alcohol, formalin, quinone, metaphosphoric acid, tannins, and many salt solutions, e.g. those of aluminium, chromium and iron, and of mercuric chloride, zinc sulphate, ammonium sulphate, potassium carbonate, acidified brine. Many of these precipitations have analogies in leather manufacture (see Parts I. to IV.). The gelatin peptones or gelatoses are formed by hydrolysis with acids, alkalies, ferment or even by digestion with hot water only. A more detailed description of the properties of gelatine is given in Part V., Section I. Gelatine is sometimes called "glutin" and "ossein."
Animals are much the most important source of proteins, especially of those which are of importance in industrial chemistry. Proteins occur in nearly every part of all animals, and the "protoplasm" of the living cell is itself a protein. The keratins include the horny tissues of animals: the epidermis proper, the hair, horns, hoofs, nails, claws, the sebaceous and sudoriferous glands and ducts, and also the elastic fibres. The gelatins are obtained from the collagen of the skin fibres, the bones, tendons, ligaments, cartilages, etc. Fish bladders yield a strong gelatin. The albumins are obtained from the ova, blood, lymph, muscles and other internal organs of animals.
The classification of proteins herein adopted fits in well with the scope and purpose of this volume. The keratins are of little