You are here

قراءة كتاب Animal Proteins

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Animal Proteins

Animal Proteins

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 8

the tops of which are level with the limeyard floor. The lime is slaked completely and mixed well with water in the pit, being particularly well plunged just before the insertion of a pack of goods. Saturated limewater is only a 0.13-per-cent. solution. The goods are occasionally "handled" i.e. hauled out of the pit and reinserted after plunging ("hauling" and "setting"). This is necessary to keep the liquor saturated with lime. The hides are inserted one by one, each being "poked down" to ensure its contact with the liquor. The goods are invariably immersed first in a previously used lime liquor. Most tanneries now carry this out in a systematic way, so as to ensure regularity in the process. As the goods are large and heavy it is less laborious to carry out the whole process in one pit. In this "one-pit system" the goods are inserted for (say) four days in an old used lime liquor, with occasional handling; this liquor is then run to the drain and a new liquor made up in the same pit, into which the goods are inserted for (say) five days. They are then hauled and sent to the unhairers. Each pack thus gets two liquors, old and new.

A better method is the "three-pit system." In this case each pack receives three liquors and has (say) three days in each, first an "old lime," then a "medium lime," and finally a "new lime." This system ensures a greater regularity of treatment, and is deservedly the most popular method for liming hides for sole leather. After being used once as a "new lime," a liquor then becomes a "medium lime," and after being thus used becomes the "old lime" which receives the green hides from the soaks. The system involves the goods being shifted twice to another pit, which is more laborious than reinsertion into the old pit, but if the limeyard be arranged in "sets" or "rounds" of three pits, the shift is usually only to the adjacent pit. One special advantage of this system is that the top hides in one pit become the bottom hides in the next pit, and vice versâ. Rounds of more than three pits are sometimes used.

Many factories have now adopted systems in which there is no handling at all. The hides are suspended in lime liquors which are agitated by mechanical contrivances (e.g. Tilston-Melbourne process), or by jets of compressed air (e.g. Forsare process). The goods are soaked and limed "mellow to fresh" by changing the liquors by means of pumps, air ejectors, etc. Thus the hides need no labour from first being inserted until drawn for depilation.

In liming, the whole of the epidermis as well as the hair is loosened, and is subsequently removed in depilation. The corium or true hide substance becomes much more swollen by imbibation of water, and when taken out of the new lime is "plumped" to very firm jelly. This plumping is a matter of prime importance to the tanner. The coarser fibres are thereby split up into the finer constituent fibrils, which fact assists very materially in obtaining a quick and complete tannage, good weight, and a firm leather. During the liming, the natural grease of the hide is saponified or emulsified, which prepares for its removal in scudding. Liming is thus a complex process: the hair is loosened, the hide is plumped, and the grease is "killed." All these results may be hastened by the use of other alkalies in addition, and most heavy leather yards assist the liming by adding also sodium sulphide or caustic soda or both. Sodium sulphide is a powerful depilatant, and will alone unhair hides easily in strong solutions even in a few hours. As in solution it forms caustic soda by hydrolysis, it possesses also the powerful plumping and saponifying powers characteristic of the latter. The addition of arsenic sulphide (As2S2) (realgar) to the lime when slaking causes the presence of calcium sulphydrate in the lime liquors thus made. This is also a powerful depilatant, but not much used for heavy leather.

The function of the lime in depilating is complex and has occasioned much discussion. Its main purpose, however, is that of a partial antiseptic. When hides putrefy, one of the first results is that the hair is loosened. In America depilation by "sweating" is carried out commercially by such a mild putrefaction, the lime liquor permits a similar fermentation at a slower rate, and all tannery lime liquors are swarming with putrefactive bacteria. Liming is thus a safer method than sweating, which may be easily carried too far. Various workers have isolated specific organisms—Wood a bacillus, Schmitz-Dumont a streptococcus—but it seems highly probable that the limeyard bacteria are just the common organisms of putrefaction sorted out or selected by the exact nature of the liquor and the method of working the limes. Many putrefactive bacteria are very adaptable and could easily accommodate themselves in this way. It is known that the exact nature of the culture medium has a great influence on the rate of development of such organisms, and which particular species thrive and obtain predominance in any limeyard will depend upon the amount and nature of the dissolved organic matter available as food, and upon the exact alkalinity and the concentration of other apparently inert substances, such as common salt and sodium, calcium and arsenic salts. Hence no two lime liquors operate alike, and approximate regularity is only assured by systematic method. In handling and shifting, the organisms are subjected to further selection, and the most adaptable survive. It is probable that different species may act symbiotically. The depilating organisms of lime liquors are probably mostly anærobes, but some may be anærobic by adaptation. It is probable that ærobic ferments commence the depilation, but this will be done before the goods are put into work, or at any rate before they reach the limes. More strictly, it is the enzymes secreted by bacteria which are directly responsible for the hydrolytic work; these enzymes are chiefly proteolytic (proteid splitting), but the lipolytic (fat splitting) enzymes have also a place.

The lime, however, not only limits and selects the course of the putrefaction, but also affords more positive assistance. Lime plays its own hydrolytic part and assists the depilation by purely chemical action. Lime will unhair without the assistance of bacteria, but its action is slow and forms a minor part of the operation in the average limeyard. This action is due chiefly to its progressive formation of calcium sulphydrate from the cystine group of the softer keratins. Lime also plays an essential part in assisting the putrefactive fermentation. It softens the keratins and thus assists the bacterial attack, it hydrolyzes other proteids and provides the bacteria with food in solution, the calcium ion increases the proteolytic action of certain enzymes, and finally the apparently inert excess of undissolved lime has an accelerating effect on the bacterial activity.

In the average limeyard these various functions are inextricably mixed up, and it is impossible to assign any definite proportion of the total depilatory effect to any of the factors at work. Lime alone will unhair, bacteria alone will unhair, and sulphides will also unhair without lime or bacteria, but in the limeyard all three agencies are at work. Putrefactive fermentation, however, obtains a good start. Ærobic fermentation commences with the slaughter of the animal, and the anærobic organisms soon commence their part, and are at work in the hide house and soaks. On entering the limes, the purely chemical hydrolytic action of lime is added to that of the bacterial enzymes as well as the action of lime as bacterial assistant, and the three continue to operate side by side. Each gives rise to the formation of calcium sulphydrate, whose own special solvent effect is

Pages