You are here
قراءة كتاب The Microscope
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"
THE MICROSCOPE.

FULLY ILLUSTRATED.
NEW YORK:
THE INDUSTRIAL PUBLICATION COMPANY.
1877.
THE MICROSCOPE.
MICROSCOPE, the name of an instrument for enabling the eye to see distinctly objects which are placed at a very short distance from it, or to see magnified images of small objects, and therefore to see smaller objects than would otherwise be visible. The name is derived from the two Greek words, expressing this property, MIKROS, small, and SKOPEO, to see.
So little is known of the early history of the microscope, and so certain is it that the magnifying power of lenses must have been discovered as soon as lenses were made, that there is no reason for hazarding any doubtful speculations on the question of discovery. We shall proceed therefore at once to describe the simplest forms of microscopes, to explain their later and more important improvements, and finally to exhibit the instrument in its present perfect state.
In doing this we shall assume that the reader is familiar with the information contained in the articles “Light,” “Lens,” “Achromatic,” “Aberration,” and the other sub-divisions of the science of Optics, which are treated of in this work.
The use of the term magnifying has led many into a misconception of the nature of the effect produced by convex lenses. It is not always understood that the so-called magnifying power of a lens applied to the eye, as in a microscope, is derived from its enabling the eye to approach more nearly to its object than would otherwise be compatible with distinct vision. The common occurrence of walking across the street to read a bill is in fact magnifying the bill by approach; and the observer, at every step he takes, makes a change in the optical arrangement of his eye, to adapt it to the lessening distance between himself and the object of his inquiry. This power of spontaneous adjustment is so unconsciously exerted, that unless the attention be called to it by circumstances, we are totally unaware of its exercise.
In the case just mentioned the bill would be read with eyes in a very different state of adjustment from that in which it was discovered on the opposite side of the street, but no conviction of this fact would be impressed upon the mind. If, however, the supposed individual should perceive on some part of the paper a small speck, which he suspects to be a minute insect, and if he should attempt a very close approach of his eye for the purpose of verifying his suspicion, he would presently find that the power of natural adjustment has a limit; for when his eye has arrived within about ten inches, he will discover that a further approach produces only confusion. But if, as he continues to approach, he were to place before his eye a series of properly arranged convex lenses, he would see the object gradually and distinctly increase in apparent size by the mere continuance of the operation of approaching. Yet the glasses applied to the eye during the approach from ten inches to one inch, would have done nothing more than had been previously done by the eye itself during the approach from fifty feet to one foot. In both cases the magnifying is effected really by the approach, the lenses merely rendering the latter periods of the approach compatible with distinct vision.
A very striking proof of this statement may be obtained by the following simple and instructive experiment. Take any minute object, a very small insect for instance, held on a pin or gummed to a slip of glass; then present it to a strong light, and look at it through the finest needle-hole in a blackened card placed about an inch before it. The insect will appear quite distinct, and about ten times larger than its usual size. Then suddenly withdraw the card without disturbing the object, which will instantly become indistinct and nearly invisible. The reason is, that the naked eye cannot see at so small a distance as one inch. But the card with the hole having enabled the eye to approach within an inch, and to see distinctly at that distance, is thus proved to be as decidedly a magnifying instrument as any lens or combination of lenses.
This description of magnifying power does not apply to such instruments as the solar or gas microscope, by which we look not at the object itself, but at its shadow or picture on the wall; and the description will require some modification in treating of the compound microscope, where, as in the telescope, an image or picture is formed by one lens, that image or picture being viewed as an original object by another lens.
It is nevertheless so important to obtain a clear notion of the real nature of the effect produced by a lens applied to the eye, that we will adduce the instance of spectacles to render the point more familiar. If the person who has been supposed to cross the street for the purpose of reading a bill had been aged, the limit to the power of adjustment would have been discovered at a greater distance, and without so severe a test as the supposed insect. The eyes of the very aged generally lose the power of adjustment at a distance of thirty or forty inches instead of ten, and the spectacles worn in consequence are as much magnifying glasses to them as the lenses employed by younger eyes to examine the most minute objects. Spectacles are magnifying glasses to the aged because they enable such persons to see as closely to their objects as the young, and therefore to see the objects larger than they could themselves otherwise see them, but not larger than they are seen by the unassisted younger eye.
In saying that an object appears larger at one time, or to one person, than another, it is necessary to guard against misconception. By the apparent size of an object we mean the angle it subtends at the eye, or the angle formed by two lines drawn from the centre of the eye to the extremities of the object. In Fig. 1, the lines A E and B E drawn from the arrow to the eye form the angle A E B, which, when the angle is small, is nearly twice as great as the angle C E D, formed by lines drawn from a similar arrow at twice the distance. The arrow A B will therefore appear nearly twice as long as C D, being seen under twice the angle, and in the same proportion for any greater or lesser difference in distance. The angle in question is called the angle of vision, or the visual angle.

Fig. 1.
The angle of vision must, however, not be confounded with the angle of the pencil of light by which an object is seen, and which is explained in Fig. 2. Here we have drawn two arrows placed in relation to the eye as before, and from the centre of each have drawn lines exhibiting the quantity of light which each point will send into the eye at the respective distances.
