You are here
قراءة كتاب Scientific American, September 29, 1883 Supplement. No. 404
تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

Scientific American, September 29, 1883 Supplement. No. 404
and show the result on a dial, so that a workman may read it off at once, without having to make any calculations.
Before I can explain how work is measured, perhaps I had better say a few words about the meaning of the word "work." Work is done when pressure overcomes resistance, producing motion. Neither motion nor pressure alone is work. The two factors, pressure and motion, must occur together. The work done is found by multiplying the pressure by the distance moved. In an engine, steam pushes the piston first one way then the other, overcomes resistance, and does work. To find this we must multiply the pressure by the motion at every instant, and add all the products together. This is what the engine power-meter does, and it shows the continuously growing result on a dial. When the piston moves, it drags the cylinder along; where the steam presses, the wheel is inclined. Neither action alone causes the cylinder to turn, but when they occur together the cylinder turns, and the number of turns registered on a dial shows with mathematical accuracy how much work has been done.
In the steam engine work is done in an alternating manner, and it so happens that this alternating action exactly suits the integrator. Suppose, however, that the action, whatever it may be, which we wish to estimate is of a continuous kind, such, for instance, as the continuous passage of an electric current. Then, if by means of any device we can suitably incline the wheel, so long as we keep pushing the cylinder along so long will its rotation measure and indicate the result; but there must come a time when the end of the cylinder is reached. If then we drag it back again, instead of going on adding up it will begin to take off from the result, and the hands on the dial will go backward, which is clearly wrong. So long as the current continues, so long must the hands on the dial turn in one direction. This effect is obtained in the instrument now on the table, the electric energy meter, in this way. Clockwork causes the cylinder to travel backward and forward by means of what is called a mangle motion; but instead of moving always in contact with each wheel, the cylinder goes forward in contact with one and backward in contact with another on its opposite side. In this instrument the inclination of the wheels is effected by an arrangement of coils of wire, the main current passing through two fixed concentric solenoids, and a shunt current through a great length of fine wire on a movable solenoid, hanging in the space between the others. The movable portion has an equal number of turns in opposite directions, and is therefore unaffected by magnets held near it. The effect of this arrangement is that the energy of the current—that is, the quantity multiplied by the force driving it, or the electrical equivalent of mechanical power—is measured by the slope of the wheels, and the amount of work done by the current during any time, by the number of turns of the cylinder, which is registered on a dial. Professors Ayrton and Perry have devised an instrument which is intended to show the same thing. They make use of a clock and cause it to go too fast or too slow by the action of the main on the shunt current; the amount of wrongness of the clock, and not the time shown, is said to measure the work done by the current. This method of measuring the electricity by the work it has done is one which has been proposed to enable the electrical companies to make out their bills.
The other method is to measure the amount of electricity that has passed without regard to the work done. There are three lines on which inventors have worked for this purpose. The first, which has been used in every laboratory ever since electricity has been understood, is the chemical method. When electricity passes through a salt solution it carries metal with it, and deposits it on the plate by which the electricity leaves the liquid. The amount of metal deposited is a measure of the quantity of electricity. Mr. Sprague and Mr. Edison have adopted this method; but as it is impossible to allow the whole of a strong current to pass through a liquid, the current is divided; a small proportion only is allowed to pass through. Provided that the proportion does not vary, and that the metal never has any motions on its own account, the increase in the weight of one of the metal plates measures the quantity of electricity.
The next method depends on the use of some sort of integrating machine, and this being the most obvious method has been attempted by a large number of inventors. Any machine of this kind is sure to go, and is sure to indicate something, which will be more nearly a measure of electricity as the skill of the inventor is greater.
Meters for electricity of the third class are dynamical in their action, and I believe that what I have called the vibrating meter was the first of its class. It is well known that a current passing round iron makes it magnetic. The force which such a magnet exerts is greater when the current is greater, but it is not simply proportional. If the current is twice or three times as strong, the force is four times or nine times as great, or, generally, the force is proportional to the square of the current. Again, when a body vibrates under the influence of a controlling force, as a pendulum under the influence of gravity, four times as much force is necessary to make it vibrate twice as fast, and nine times to make it vibrate three times as fast; or, generally, the square of the number measures the force. I will illustrate this by a model. Here are two sticks nicely balanced on points, and drawn into a middle position by pieces of tape, to which weights may be hung. They are identical in every respect. I will now hang a 1 lb. weight to each tape, and let the pieces of wood swing. They keep time together absolutely. I will now put 2 lb. on one tape. It is clear that the corresponding stick is going faster, but certainly not twice as fast. I will now hang on 4 lb. One stick is going at exactly twice the pace of the other. To make one go three times as fast it is obviously useless to put on 3 lb., for it takes four to make it go twice as fast. I will hang on 9 lb. One now goes exactly three times as fast as the other. I will now put 4 lb. on the first, and leave the 9 lb. on the second; the first goes twice while the second goes three times. If instead of a weight we use electro-magnetic force to control the vibrations of a body, then twice the current produces four times the force, four times the force produces twice the rate; three times the current produces nine times the force, nine times the force produces three times the rate, and so on; or the rate is directly proportional to the current strength. There is on the table a working meter made on this principle. I allow the current that passes through to pass also through a galvanometer of special construction, so that you can tell by the position of a spot of light on a scale the strength of the current. At the present time there is no current; the light is on the zero of the scale; the meter is at rest. I now allow a current to pass from a battery of the new Faure-Sellon-Volckmar cells which the Storage Company have kindly lent me for this occasion. The light moves through one division on the scale, and the meter has started. I will ask you to observe its rate of vibration.