You are here

قراءة كتاب Scientific American, September 29, 1883 Supplement. No. 404

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Scientific American, September 29, 1883 Supplement. No. 404

Scientific American, September 29, 1883 Supplement. No. 404

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 6

I will now double the current. This is indicated by the light moving to the end of the second division on the scale; the meter vibrates twice as fast. Now the current is three times as strong, now four times, and so on. You will observe that the position of the spot of light and the rate of vibration always correspond. Every vibration of the meter corresponds to a definite quantity of electricity, and causes a hand on a dial to move on one step. By looking at the dial, we can see how many vibrations there have been and therefore how much electricity has passed. Just as the vibrating sticks in the model in time to come rest, so the vibrating part of the meter would in time do the same, if it were not kept going by an impulse automatically given to it when required. Also, just as the vibrating sticks can be timed to one another by sliding weights along them, so the vibrating electric meters can be regulated to one another so that all shall indicate the same value for the same current, by changing the position or weight of the bobs attached to the vibrating arm. The other meter of this class, Dr. Hopkinson's, depends on the fact that centrifugal force is proportional to the square of the angular velocity. He therefore allows a little motor to drive a shaft faster and faster, until centrifugal force overcomes electro-magnetic attraction, when the action of the motor ceases. The number of turns of the motor is a measure of the quantity of electricity that has passed.


FIG. 5

I will now pass on to the measurement of power transmitted by belting. The transmission of power by a strap is familiar to every one in a treadle sewing machine or an ordinary lathe. The driving force depends on the difference in the tightness of the two sides of the belt, and the power transmitted is equal to this difference multiplied by the speed; a power meter must, therefore, solve this problem—it must subtract the tightness of one side from the tightness of the other side, multiply the difference by the speed at every instant, and add all the products together, continuously representing the growing amount on a dial. I shall now show for the first time an instrument that I have devised, that will do all this in the simplest possible manner. I have here two wheels connected by a driving band of India-rubber, round which I have tied every few inches a piece of white silk ribbon. I shall turn one a little way, and hold the other. The driving force is indicated by a difference of stretching; the pieces of silk are much further apart on the tight side than they are on the loose. I shall now turn the handle, and cause the wheels to revolve; the motion of the band is visible to all. The India-rubber is traveling faster on the tight side than on the loose side, nearly twice as fast; this must be so, for as there is less material on the tight side than on the loose, there would be a gradual accumulation of the India-rubber round the driven pulley, if they traveled at the same speed; since there is no accumulation, the tight side must travel the fastest. Now it may be shown mathematically that the difference in the speeds is proportional both to the actual speed and to the driving strain; it is, therefore, a measure of the power or work being transmitted, and the difference in the distance traveled is a measure of the work done. I have here a working machine which shows directly on a dial the amount of work done; this I will show in action directly. Instead of India-rubber, elastic steel is used. Since the driving pulley has the velocity of the tight side, and the driven of the loose side of the belt, the difference in the number of their turns, if they are of equal size, will measure the work. This difference I measure by differential gearing which actuates a hand on a dial. I may turn the handle as fast as I please; the index does not move, for no work is being done. I may hold the wheel, and produce a great driving strain; again the index remains at rest, for no work is being done. I now turn the handle quickly, and lightly touch the driven wheel with my finger. The resistance, small though it is, has to be overcome; a minute amount of work is being done; the index creeps round gently. I will now put more pressure on my finger, more work is being done, the index is moving faster; whether I increase the speed or the resistance, the index turns faster; its rate of motion measures the power, and the distance it has moved, or the number of turns, measures the work done. That this is so I will show by experiment. I will wind up in front of a scale a 7 lb. weight; the hand has turned one-third round. I will now wind a 28 lb weight up the same height; the hand has turned four-thirds of a turn. There are other points of a practical nature with regard to this invention which I cannot now describe.

Pages